
V
 B

 A

 F

 O

 R

 T

 H

 E

 V

 B

 E

 Page 2/ 324

Acknowledgments

I would not be even a fraction of the VBA programmer I am without standing on the shoulders of giants.
One such was Chip Pearson. Unfortunately, he died in a car accident in April 2018. The programming
world and especially the Excel world, is very much poorer for him not being there. All communications I
had with him showed him to be polite, thoughtful, very experienced, and willing to share that with others.
RIP Chip.

My brother Dave has been invaluable in proofing and pointing out, amongst amongst other things, my
extreme inconsistency and difficulties with punctuation. Thanks bro.

My talented other half, Lisa, who wrote most of the original code to the original CodeCode excel add in.
She has had over 1000 downloads of it over 7 years.

The internet. Thank you to the gazillions of people who have posted code and other items there for people
like me to download, copy, and abuse.

More specifically: Thank you to the Code Cage web site and the people on it. It’s not there any more and
I personally think that’s a real pity. Thank you to Eileens lounge and the experts there and their many
many years of experience and not least their humour.

UPDATE:

Directly after his death, Chips site was pulled in its’ entirety. It’s back up now. Thank you to those who

are responsible.

 Page 3/ 324

Contents

Acknowledgments ... 2

Table of Code .. 7

Table of Figures ... 9

Introduction .. 10

Disclaimer.. 11

Some initial comments about VBA and the VBA IDE/VBE .. 13

Environment ... 14

Application specific code .. 18

REMEMBER REMEMBER ... 19

Project names ... 24

Code to SORT DIMS ... 27

SortDims Walkthrough .. 35

Functions used from the Extensibility library in subccSortDims... 41

Why Sort the dims .. 44

Sort a selection of Dims .. 48

Splitting up Dims from a single line .. 54

What’s in a name .. 61

Recap number one! .. 62

Where Are We .. 63

Procedures to Classes ... 68

A little about classes. .. 68

Class Advantages. .. 68

Class Disadvantages. ... 68

Simple class layout .. 68

Building a class from a Sub.. 71

Code to Split Dims up .. 91

Debug Print variables .. 97

 Page 4/ 324

De debug ... 103

VBE programmers do it Immediately! .. 107

Button up .. 109

Messages ... 118

Debugging and Tracing ... 128

The Registry .. 145

Line Numbers .. 148

Recap number two .. 164

Time out! ... 170

Dims Bottom ... 174

Building A Compile Report and Multithreading .. 177

Debug Reprise ... 202

Continuations .. 209

I do Declare ... 213

Time Ladies and Gentlemen please! ... 221

Insert timing code ... 224

Some Timer examples ... 235

It’s Complicated .. 241

No Comment! .. 254

Inserting comments .. 262

Key Words ... 244

HTML Report ... 249

Recap number three ... 250

What’s to come? ... 252

Export and Import ... 254

Saving as an Add-in ... 254

Runtime Errors .. 254

Parameters in WhereAreWe ... 275

Considerations for Inserting, Cross referencing and Cleaning .. 283

 Page 5/ 324

Multilinguality ... 285

Get the strings ... 286

Finally .. 288

Appendix Notes ... 290

Appendix A Links .. 291

Chip Pearson ... 291

Deconstruction of a code module... 291

Code for Menus and buttons in the VBE. ... 291

Jan Karel Pieterse .. 291

Stephen Bullen .. 291

Multithreading with vbs .. 292

Cyclomatic Complexity .. 292

MSDN Discussion of high-performance time stamps. .. 292

Defensive programming and reliability. Analysis of post mortem NASA software. 292

Naming Conventions ... 292

Version Control ... 293

String optimization .. 293

Appendix B Software for the VBE ... 294

Pretty Code Print ... 294

MZ-Tools ... 294

Smart Indenter .. 294

WinMerge ... 296

Spy++ ... 296

RubberDuck ... 296

CodeCleaner .. 297

Code Manager ... 298

vbWatchdog .. 298

VBA Code Compare ... 298

Appendix C My Personal Naming Convention and procedure layout .. 300

 Page 6/ 324

Variables ... 300

Procedures .. 301

Procedure Comments ... 301

Procedure layout ... 303

Module Names .. 304

Appendix D VBA as an OOP programming language .. 305

Appendix E Creating an Add-in ... Error! Bookmark not defined.

Appendix F Clearing the immediate window ... 307

Appendix G P-Code ... 309

Appendix H Acronyms .. 310

Appendix I Comments and Contribut as of <> .. 311

Appendix J Latest cWhereAreWe Class Module Error! Bookmark not defined.

Appendix K Cross Reference example .. 314

Appendix L High Definition Timer Class ... 319

Appendix M Word Doc stuff .. 322

Appendix N Contact .. 324

To Do .. Error! Bookmark not defined.

 Page 7/ 324

Table of Code
1 subccSortDims .. 28

2 subMsgBox ... 33

3 subccSortDims walkthrough .. 35

4 subccSortSelectedDims .. 48

5 GetSelection parameters ... 52

6 Setting lines to sort .. 53

7 All Dims on a single line ... 54

8 One Dim per line .. 54

9 fncGuessVarType ... 56

10 INI File entries for my pre/suffixes... 59

11 Declaration as Global ... 61

12 subWhereAreWe.. 64

13 Setting variables to VBE objects... 66

14 Simple Class layout... 68

15 Simple cNameExample Class code ... 69

16 Using the cNameExample example class ... 70

17 subWhereAreWe recoded to convert to a Class .. 71

18 subInsertGetProperties .. 74

19 subtestcWhereAreWe .. 84

20 subtestsubWhereAreWe .. 85

21 subWhereAreWe corrected for line numbers ... 86

22 My Procedure parameters layout .. 90

23 subccSplitAllDims ... 92

24 subInsertSelectionDebug ... 98

25 Sub before subInsertSelectionDebug .. 100

26 Sub after insertSelectionDebug ... 100

27 subccDeleteDebugPrint ... 103

28 Keep UserForm in the VBE ... 105

29 Clear immediate window with SendKeys ... 107

30 Clear immediate window. Debug.Print 1 ... 108

31 Clear immediate window. Debug.Print 2 ... 108

32 Button code for the CLASS module .. 110

33 Button code in STANDARD module.. 110

34 subBookMarkAndBreakpoint ... 113

35 Userform/class properties for subMsgBox .. 118

36 Using the MsgBox userform ... 123

37 Tracing example 1 .. 128

 Page 8/ 324

38 subSpendTime .. 130

39 Tracing Example 2 .. 130

40 subListProcsToImediateWindow ... 131

41 subAddTraceLinesToAModule ... 134

42 subDeletDebugPrintForModule1 ... 139

43 Registry key for VBA ... 145

44 VBA Registry calls ... 145

45 SaveSetting statement ... 146

46 subDeleteSettings example ... 149

47 subGoToLine .. 153

48 subccInsertModuleLineNumbersInProcedure ... 158

49 subccDeleteLineNumbersInProcedure .. 160

50 aamTopOfMacros .. 165

51 Ancient variable suffixes .. 170

52 VBA Converting example ... 172

53 subccInsertSingleDim ... 174

54 fncGetDeclarations .. 213

55 fncGetJoinedArray ... 214

56 fncGetJoinedArrayFromDeclarations ... 216

57 WhereAreWe Update .. 224

58 fncLookThroughDims 1 .. 226

59 fncLookThroughDims 2 .. 227

60 My method of dealing with errors ... 264

61 subccInsertErrorCodeAtLine .. 265

62 String length example .. 285

63 Sub Update SmartIndenter Tab Width .. 295

64 Some of my procedure comments ... 301

65 My procedure layout.. 303

66 Clear immediate window with API ... 307

67 Ancient type symbols .. Error! Bookmark not defined.

68 Latest cWhereAreWe Class Module .. 313

69 High definition timer class ... 319

 Page 9/ 324

Table of Figures
1 My VBE Toolbars .. 15

2 Going grey .. 19

3 Can't enter break mode ... 20

4 Document References .. 23

5 WinMerge 1 ... 52

6 WinMerge 2 ... 53

7 Can't enter break mode ... 97

8 Insert Debug Options ... 102

9 My MsgBox UserForm .. 122

Figure 10 subMsgBox in use. .. 126

11 My InputBox UserForm .. 127

12 Registry after SaveSetting .. 147

13 Error on DeleteSetting ... 149

14 Error message from handler code ... 151

15 Module line number on code line .. 152

16 Error message with module line number .. 153

17 My mumblemumble menu .. 168

18 My Arrange macros menu UserForm ... 169

19 Variable not defined .. 174

Figure 20 Variable not defined ... 178

 Page 10/ 324

Introduction

This book/document is for people who…

• Know what VBA is and use it

• Want to "enhance" the VBE

• Want to do that on their own terms

• Have some knowledge of the VBE interface and how to manipulate it

This book/document is NOT for people who…

• Are completely fresh to the VBE. Though, a lot of the processes are explained step by step

This is a PRACTICAL guide to using VBA to alter and debug code in the VBE. The emphasis is on code
rather than object models and so on. There are some excellent sources that describe that stuff in lots of
detail, some of which are listed in the appendices. Most of those sources offer excellent code as well. If
you are looking to perform a specific action, then I’d advise you to google first.

However, I specifically don’t want this to be a “ooh lets copy this” source. Sure, you can do that but most
of it will need tweaking. I want you to think.

This offering is an attempt to show you how to code things in the VBE that other sources don’t tend to
do. An example is sorting Dims in a procedure.

I’m reminded by Hans of Eileens lounge fame, that in order for any of the procedures here to run they
have to be allowed to run. See Environment.

And finally, for the introduction anyroad, none of the code here is C# C++ C Python Java Javascript or any
other language except VBA.

This really is VBA for the VBE.

 Page 11/ 324

Disclaimer

This bit is going to be pretty long. Have you tried reading some of the miscrosoft disclaimers? HAH! And
you have to agree to them! Not so here. I’m just saying it as it is for us so we don’t get beat up or taken
to court.

I make no claims for consistency here or anything else for that matter. There are variable names used as
appropriate for their purpose in a piece of code, and some variables will have different prefixes for the
same thing depending on when it was written. For example, I don’t use integers now, long history there,
and now use Long. I used to refer to long with a single l. I found that wasn’t enough for me, and now use
lng for all “integer” numbers. The result is some older procedures use I for integer then l for Long and

now use lng for Long and also str for string and other oddities. Therefore, there are NO guarantees as to

the relative quality of the code! And it’s all deliberately open and free so anyone can alter it as they
choose anyway! That’s not an excuse. It’s a fact. And a description of code here.

If you use any code from here, it would be nice if credit is given somehow, although that’s not obligatory
at all. I myself make use of other peoples’ code unashamedly, but I’ll always do my best to give credit
where it’s due. If you want to pretend you wrote it though, no one is stopping you.

If anyone wants to crit any of the code here, go ahead. Love it! Let me know if you would

delete/add/change anything for what you think is better. If applicable I’ll change it and you WILL get
credit.

This book is mostly about CODE. There is a SIGNIFICANT amount of it here, and I wouldn’t blame you
for feeling cheated with the actual substance of the book. However, I feel it’s worth including it so that
it’s possible to copy/paste and/or work through offline. Too often I’ve come across books that include
snippets of code that are difficult to read because there’s missing context and you need internet access
to perhaps download.

There is a LOT of code here performing string manipulation.

All the code is downloadable from thinkz1.com as well as listed here. It’s in the VBA for the VBE Docm.

This is all free. But hehehe, donations are welcome.

Some appendices may dissapoint you. Most notably VBA as an OOP Programming language, and P-

Code. Both of these are covered far better than I could ever do so in the given links and I say exactly

that.

I try desparately to not pretend to be what I’m not!

I do my best to explain the code given here to show how things work. It’s up to you if you want to extract

code sections into subs and so on. I STRONGLY advise you, at least at the start, and if you’re not using

 Page 12/ 324

the MZ-Tools or Rubberduck code explores, to use a LOT of modules! And, as soon as you’ve inserted a

new module to RENAME IT!

Much of the code here has been "refactered" specifically for this book. A lot of it is from code from an
Excel add in built quite some time back almost entirely by Lisa. There are aproximateley 700+ subs and
functions in that add in. I’ve said "a lot" because some of them are just class methods to return things.
Lisa does a good job of maintaining a list of subroutines on the site using a procedure she wrote, which is
also on the site. She is always updating it. Mad coder incarnate. The same stipulations apply. If you get

in touch, she WILL reply.

Te add in is downloadable from thinkz1.com. For free. Same conditions apply. My/our email is in the
appendices. The equivalent code with this book though is a leeeetle bit better. Which is part of the

definition of being refactered. But beware! Some of the code here is quite old, works, and hasn’t been
touched because of the legendry cliché… If it ain’t broke, don’t fix it. subSortDims, the piece of code we
kick this journey of with is an example of that.

I make no excuses for my use of exclamation marks dots elipses and question marks!!!! … ??? Thanks
again Dave!

And here’s a punctuation warning! Depending on your MS Word setup, if you copy and paste code
from this document then you may have to change the type of quotation marks after pasting into the VBE.
I’ve done my best to allay that… But hey! It’s your word setup.

To date, the only way around this that I’ve found is to do just that. Copy and paste into the VBE and then
run code to alter the quotes as needed.

Now then. Don’t expect a logical progression. This book wanders a bit. It’s intentional sort of because
that’s the way I work. While looking at some code, we may see that we could change it in some way to
make it better. And we go there and do it. In that way it doesn’t follow a strict pattern. This is also
hmmmmm, intentional. If you like it’s a stream of consciousness, in that a door opens and we go there.
But we always at least try to go back through the door and get back to what we were up to before. Climb
back up the chain. This means it’s not really a book of separate chapters. Most of them follow on and are
connected. Sort of.

And finally, for the disclaimer, everything here and elswehere is provided "As Is" and under the MIT
liscence, the GNU liscence, and any other liscence you can think of for public stuff.

 Page 13/ 324

Some initial comments about VBA and the VBA IDE/VBE

IMNSVHO:

• VBA ain’t going away any time soon.

• It’s free. Totally. No extra costs. No hidden costs. Nothing.

• The VBAIDE is common across applications. It’s the same in ALL of them.

• There’s a LOT of legacy VBA code in the wild.

• VBA has been much maligned, from being a "script kiddy" language to not being proper OOP. I
point to a discussion of this in the appendix. I do not enter into a discussion myself.

• A plus point is VBA comes with most of the desktop office applications: Excel, Word, Access,
Powerpoint and so on, and others. Most famously AutoCad! It’s even possible to add it to an
application that doesn’t have it!

• The VBAIDE has been more or less the same format with the same windows and so on since the
beginning, and it looks very much as though it’s going to stay that way with no further major
updates. It’s a constant.

• VBA is a great deal better than repetitive manual work, and a great deal better than nothing at all.
Not my words and I’m not sure where from. . But true.

UPDATE: Source Wikipedia

VBA itself has actually been updated quite a bit apparently to, amongst other things, try and take
advantage of 64-bit processors. Not sure how or if that has changed the VBE though. Development
on VB stopped, and the last version of VB, VB6, was delivered in 1998.

UPDATE: Source RubberDuck

The VBA IDE was last updated well over 20 years ago.

UPDATE: MZ-Tools

MZ-Tools V8 is a major update to a major set of tools. IMO There is some minor overlap with
rubberduck though. While rubberduck is built in, I think, C++, MZ-Tools 8 is a total rewrite of MZ-

Tools 3 with a LOT more, in .Net. Their philosophies though, are chalk and cheese.

 Page 14/ 324

Environment

We’re going to practically live in the VBE for a while, so here are a few tips to make life possibly a bit
easier. Note though, this isn’t obligatory! If you work differently then vive la difference! So, open the VBE
and let’s get started. And remember, these are only suggestions!

• Put all the good icons you like on one custom toolbar.
o Right click on any toolbar or menu item.
o Click the bottom option which should be “Customize…”. A small window opens with three

tabs.
o On the Toolbars tab, create a New empty toolbar. This is a floating toolbar. Drag it to the

top where the standard toolbar is.
o Go to the second tab, Commands.
o Click the top left-hand category. This should be File.
o Look at the Commands on the right-hand side and decide if you want it in your new

custom toolbar.
o If you want a command, drag it to your toolbar.
o Repeat for the other categories. It’s worth going through all of the commands to see if

there’s something you’d like to have an icon for. This may take as much as 10 minutes!
o While the Customize window is open you can alter any of the toolbars by dragging the

command icons to them or off them. If you want to alter the standard menu for example,
just drag the icons off it and release the mouse.

• Get rid of toolbars you don’t need, because you’ve put all of your icons together on one custom
toolbar. Opening that toolbar then opens everything you want.

o Untick the Toolbars that aren’t needed in the Toolbars tab

• Alter the indent to two rather than the default four. This will significantly reduce sideways
scrolling.

o Tools
o Options
o Editor
o Alter Tab width
o OK

• Switch on Option Explicit for new modules.
o Tools
o Options
o Editor
o Tick, Require variable declaration.
o OK

• Make switching to the VBE easier than going to the developer tab, by adding an icon for the
VBE/VBA to the QAT (Quick Access Toolbar) in the application. Put it in the same place in all the
applications you use. I suggest top left.

 Page 15/ 324

o Go to the Document. The QAT is not in the VBE. You will probably see a few icons at the
top left of your screen. That’s the QAT.

o Right click one of the icons.
o Click Customize quick access toolbar…
o A large window opens
o From Choose commands from, select All commands
o Scroll down the list on the left deciding which commands/icons you want on the QAT
o Use the Add button between the lists to add them to the QAT
o OK

• Trust access to the VBA project object model in the parent application.
o File
o Options
o Trust Center
o Trust Center Settings
o Macro Settings
o Choose Enable All macros
o Tick Trust access to the VBA project object model
o OK
o OK

For the record, here’s my VBE toolbar setup. This is from Excel as you can see by the far left icon. It’s

IDENTICAL in Word, Access and so on once you build it in any one of those applications.

1 My VBE Toolbars

I’ve overlapped the pictures so you can see that most of the icons are in a single custom toolbar.

QAT

 Page 16/ 324

Note there are only TWO toolbars.

Line/Column cannot be put into a different toolbar. It is in fact in the Standard toolbar, from where it
just will not move! Stubborn bugger! So, I’ve removed the other icons from the standard toolbar. It’s
easy enough to reset if I need to.

The items I have in my custom toolbar are:

1. View Microsoft Excel (application)
2. Project explorer
3. Insert Module
4. Save
5. Macros
6. Redo
7. Indent
8. Outdent
9. Comment block
10. Uncomment block
11. Toolbox
12. List Properties/Methods
13. Parameter Info
14. Design Mode
15. Toggle bookmark
16. Next bookmark
17. Previous bookmark
18. Clear all bookmarks
19. Break
20. Reset
21. Run
22. Step into
23. Step over
24. Step out of
25. Step to cursor
26. Set next statement
27. Show next statement
28. Toggle breakpoint
29. Clear all breakpoints
30. Last position
31. Locals
32. Edit watch
33. Add watch
34. Watch window
35. Call stack
36. Immediate window

 Page 17/ 324

37. Go to Definition
38. Pretty code print

Yes, I know there’s an edit toolbar and a debug toolbar and so on. I chose to do things this way because
everything I want on a regular basis is in one place. It doesn’t move and can be put on one line, so I save
screen space, and there are no duplicates. If I want one of the floating toolbars, I can still activate them.

Pretty code print is an add-in and I mention about that and some other add-ins briefly in the appendices.

If you set this up in one application it will be the same in the other client applications as well because
there’s one VBA to bind them. Except Access.

And finally, to repeat, add a Visual Basic icon to the QAT so you don’t have to go to the Developer tab all
the time! Shove it over to the left most position so you know where it is.

I emphasise again, this is not obligatory. You do not have to do it! If you’re happy with your set up then
leave it alone!

UPDATE: RubberDuck.

Rubberduck is an open source COM add-in for the VBE in VBA. It’s very definateley worth checking out.
Especially the code explorer! The first version was v1.0 (duh), and was published on Nov. 29th, 2014.
The current version at the creation of this PDF is v2.2.0.3086 and was published on Apr. 9th 2018.

And…. Rubberduck will add an extra toolbar on a separate line reducing the available screen space.
Apparently, this is by design. You can "hide" it. But at the moment, you have to do that every time you
start VBA.

Update: MZ-Tools 8

Just want to mention there is a code explorer here as well.

 Page 18/ 324

Application specific code

There isn’t any.

Weeeellll I say that. I’ve done my best to make it so but of course I may have missed something or just

plain made a mistake. PLEAAASSE! Let me know. You WILL get credit.

There’s a reason for there not being any application specific code. We’re not using the application. We’re
editing and so on, in the VBE.

There is some hard-coded stuff that refers to specific filenames for different applications in the section
dealing with code for compiling. I’m working on that. The aim is to have different code doodads for/with
the same extensions and so on so it’s more generic.

Otherwise, this has been tested in Word Excel Powerpoint and Access. Honestly. I can show you the log
files even!

Those are the big four. VBA is also native in Visio, Project, Outlook, FrontPage, Autocad, and even
WordPerfect. I have no reason to suppose the VBA presented here will not work with those. This is

because we are massaging code in the VBE, and not doing anything in the host application.

SharePoint and OneNote have missed out on VBA. Shame. OTOH, there’s probably no need!

If you have issues then get back ASAP. We can even email each other and get into a dialog! Stuff will be

altered appropriately to reflect any concerns with credit. There will also be a separate ADDENDUM file
or some such, maybe just on the web site or even in an appendix here, that I will update with the latest
and greatest as it comes in from every/anyone. The format is still up to debate but I think I’m going to go
with a web page. Dunno. Opinions?

 Page 19/ 324

REMEMBER REMEMBER

FIRST!

There are some big main, MAJOR tenets to using code to alter code in the VBE:

1. Don’t do it to yourself!

VBA saves its code as "P-Code" as part of the VBA project you’re in. There’s a link in the appendices for

an explanation, sort of, of p-code, though "it’s complicated". If you screw up the pointers by adding a

line to the code you’re running, or worse, deleting lines, it throws its hands up, says I don’t know where I

am anymore, and everything goes grey. Then the ONLY recourse is to kill and restart the Application. In

some cases you will add or delete a line and all will be good. This is because the pointers in the P-Code

are still pointing to the same place. Don’t’ trust it! If you don’t know how P-Code works then there is

no reason to think Oh, I can add lines below this, or I can delete lines above this. If you are certain that

it’s ok to do that then go ahead! Are you certain? Having said that, just reporting stuff like line numbers

and so on doesn’t alter anything. So running such against yourself in that case is fine.

2 Going grey

2. Save. A lot.

 Page 20/ 324

Apart from being good practice, there’s also a good reason. Aaaaand it has a lot to do with the

above. Number 2 WILL happen from time to time. When it does, you don’t want to have to type
in a bunch of code again to get back to the point where you got the problem.

3. Using Step/F8 is not always possible.

If you try to breakpoint while altering code, you’ll often get the "Can’t enter break mode at this
time" message below, where the options are either Continue or End. While working with altering
code in the VBE, get used to using Debug.Print to trace what’s happening. You can stop the code

sure, by pressing END. But you probably need runtime information. Debug.Print is your only
option.

If you try to step through code that’s bombed in this way you will get the same message wether
you like it or not. Stepping through may give you the line before where this happens. This is a
standard method in mainframe memory dumps. The dump will give you the memory address of
the line before the problem. Then go back to the assembler and look at the next line. That’s the
one that’s causing the problem. We’re not dealing with mainframes or assembler here. But at

least you get to know which line might be causing a problem.

3 Can't enter break mode

4. You need a reference to "Microsoft Visual Basic for Applications Extenibility 5.3".
You need this for ANYTHING you do with VBA in the VBE.

UPDATE: There are quite a few sites out there that say you do actually need this reference, but
it turns out this isn’t strictly true. You cannot use any of the VBIDE objects as VBIDE objects. But,
you can set all of the objects as Object. Thank you, Doc.AElstein and HansV of Eileens Lounge.

 Page 21/ 324

The following three pieces of code are equivalent and will all give the same result.

The big difference between the first and second is that the second is much easier to read.

The big difference between the second and third is that you do not get any “intellisence” with the
second and you do with the third.

There are some implications for early or late binding too but I don’t go into that.

My personal advice, FWIW, is to use a reference to the extensibility library.

1 Single line Without Extensibility lib Ref

 MsgBox
Application.VBE.ActiveVBProject.VBComponents(Application.VBE.ActiveCodePane.CodeModule.Name).Name

2 Multiple lines without Extensibility lib Ref using Dim… As Object

Dim vbplProject As Object
Dim vbclComponent As Object
Dim vbcmlCodeModule As Object
Dim vbcplCodePane As Object
Dim slModuleName As String

Set vbplProject = Application.VBE.ActiveVBProject
Set vbcplCodePane = Application.VBE.ActiveCodePane
Set vbcmlCodeModule = vbcplCodePane.CodeModule
slModuleName = vbcmlCodeModule.Name
Set vbclComponent = vbplProject.VBComponents(slModuleName)

MsgBox vbclComponent.Name

3 Multiple lines with Extensibility lib Ref using Dim… As VBIDE.item

Dim vbplProject As VBIDE.VBProject
Dim vbclComponent As VBIDE.VBComponent
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbcplCodePane As VBIDE.CodePane
Dim slModuleName As String

 Page 22/ 324

Set vbplProject = Application.VBE.ActiveVBProject
Set vbcplCodePane = Application.VBE.ActiveCodePane
Set vbcmlCodeModule = vbcplCodePane.CodeModule
slModuleName = vbcmlCodeModule.Name
Set vbclComponent = vbplProject.VBComponents(slModuleName)

MsgBox vbclComponent.Name

Here is a pic of my references for this ms word document. I use the same basic refs for all
applicastions.

 Page 23/ 324

4 My Document References

 Page 24/ 324

Project names

Let’s talk a bit about VBA Project names.

Open the VBE in a new instance of an application. You’ll see that the name of the VBA project is "Project".
Well it is in Word anyway, which is what I’m writing this in. In Excel it’s "VBAProject". Powerpoint is
"VBAProject" as well.

Access is, well, Access. The paradigm of how you work there is different. Though I can’t help feeling that
the fact the developer teams are separate teams and team coordination has something to do with it.
Ahhh well.

For Access, the project name is created from the default filename that Access gives a new database. This
is taken from the files in the default save folder and the name will fill the numbered sequence database1,
database2 and so on depending on the files already there. If there’s already a database2 and no database1
then the file will be called database1 and so will the VBA project.

There is exactly ONE VBA project to a Document / WorkBook / DataBase / Presentation.

This is important!

Let’s have a look:

• Open Word.

• You should be in Document 1 or the equivalent in your language flavor of Word.

• Go to the VBE.

• You’ll see that there is a VBA project called "Project".

• Back to word and create a new Document.

• Back to the VBE.

You’ll see TWO VBA projects, One for each document and both named "Project"

Don’t worry… you haven’t saved anything yet. These will all disappear when you close Word and don’t
choose to save.

Try it in Excel or Powerpoint:

• Open the application.

• Go to the VBE.

• You’ll see a VBA Project for that document called "VBAProject".

• Back to the application

• Create a new document.

• Back to the VBE

 Page 25/ 324

There will be TWO VBA projects both named "VBAProject.

So. How do you reference a procedure you want to run that has the same name in say, Excel and
Powerpoint but from their own application projects. And yes, I’ve picked those deliberately, because they
have the same default VBA project name, hehehe.

If you haven’t noticed, the project names are all appended by the filename in round brackets in the project
explorer. Always.

###Outlook?

Together these two items make the name of any VBA project in any application unique.

However! It’s possible to, and I strongly recommend that you do, change the name of all of your VBA

projects to "something meaningful" as soon as you can. Right after you’ve created it would be good!

It’s the same process once you’re in the VBE in any application.

• Open the VBE

• Select the project in the project explorer

• Press F4

• Change the name

In fact, the same is applicable to module names. Create ‘em, Change ‘em. Trust me. You’ll be happy
you did it. Instead of Module1 Module2 etc, mTest, mGoodCode, mILoveClarice, mVBAForTheVBE and so
on.

You’ll notice I prefix module names with a lower-case m. I’d just like to mention here, and you will see

me mention it again, that just simply using a naming convention GREATLY enhances the VBE and using

VBA, and is VERY highly recommended by people much better and more experienced than me. I outline
the one I use personally in the appendices. I mention this a lot.

Because you can only ever have one copy of outlook open locally on your computer, there can be only
one outlook project. This is always called Project1.

Update: As mentioned above, Both MZ-Tools 8 and Rubberduck have implemented a procedure/project

explorer. This makes navigating to a particular module and procedure a lot easier.

 Page 26/ 324

Some module anatomy

4 Module

1 Option Explicit First declaration line .CountOfDeclarationLines = 4
2 .CountOfLines = 20
3 Declaration 1
4 Declaration 2 Last declaration line
5 1 First line of subName1 .ProcStartLine("subName1", vbext_pk_Proc) = 5
6 2 .ProcCountLines("subName1", vbext_pk_Proc) = 7
7 3
8 4
9 5 Sub subName1 .ProcBodyLine("subName1", vbext_pk_Proc) = 9

10 6
11 7 End Sub Last line of subName1
12 1 First Line of subName2 .ProcStartLine("subName2", vbext_pk_Proc) = 12
13 2 .ProcCountLines("subName2", vbext_pk_Proc) = 9
14 3
15 4 Sub subName2 .ProcBodyLine("subName2", vbext_pk_Proc) = 15
16 5
17 6
18 7
19 8 End Sub
20 9 Last line of subName2

The above shows that if the procedure has blank or comment lines above the declaration, the line count

for the procedure, starts at the first of those lines after the last declaration line or the first line after the

End of the previous procedure. Being the last procedure in a module causes a few problems as we will

see later.

 Page 27/ 324

Code to SORT DIMS

I’m not that daft. I know that a big reason you’re here is code!

Sooooo! Here’s some code.

A bubble sort is used here. A bubble sort is one of the slowest sorts there is. However, it turns out from

studies, that the slow sort algorithms are actually pretty good if our data is already reasonably well-ordered,

and that it doesn’t really matter at all which sort we use if the data set is small anyway. I’m NOT going into

the relative merits of different sorts. A very brief description of the bubble sort process is in the appendices.

We’re choosing this procedure and sort method for a number of reasons.

• It’s relatively small

• It’s relatively self-contained

• The number of Dims in your proc is not going to be in the hundreds.

• You can see it working. Cool!

• It can actually be quite useful

• We like it and it’s simple.

• Remember those doors I mentioned in the introduction? This will lead to other procedures some
of which are…

o Sorting a selection of Dims instead of all of them
o Formating Dims to one a line
o Moving Dims to the top of a procedure
o Creating a Class from a Sub
o Adding code to do debug print of a selected variable
o Using a UserForm in the VBE while staying in the VBE
o Clearing the immediate window
o Adding a toolbar with buttons to run code to the VBE
o Using the standard VBE menu items in code
o Setting up a crude procedure "trace"
o Writing to and reading from the Registery
o Adding module line numbers to code

So! Lots to look forward to!

This routine works directly on the code. It does not, as is possible, read the all of the lines to sort into an
array, sort the array, and replace the originals in one go. Though there is code later that does that for other
things later.

This is the original code written quite some years ago. You’ll see that an Object is used for the code pane
rather than VBIDE.CodePane. Long type local variables also have the prefix ll.

 Page 28/ 324

5 subccSortDims

Option Explicit

Sub subccSortDims()
' BATCH.
'
' Sort dims in a procedure.
' Assume dims are together.
' Assume one to a line.
' Assume <Definition> Name
' Bubble sort - This is a slow sort method
' just so we can see it work :-)
'

Dim slProcName As String
Dim slLine2 As String
Dim slLine1 As String
Dim slA2() As String
Dim slA1() As String
Dim olPane As Object
Dim llCompLine2 As Long
Dim llCompLine1 As Long
Dim slOLine1 As String
Dim slOLine2 As String
Dim slDef1() As String
Dim ilLenDef1 As Integer
Dim slDef2() As String
Dim ilLenDef2 As Integer
Dim llStartLine As Long
Dim llSRow As Long
Dim llSCol As Long
Dim llLine1 As Long
Dim llERow As Long
Dim llECol As Long
Dim llCountLines As Long
Dim ilSanityCheck As Integer
Dim llEndLine As Long

 Page 29/ 324

Set olPane = Application.VBE.ActiveCodePane
olPane.GetSelection llSRow, llSCol, llERow, llECol

slProcName = olPane.CodeModule.ProcOfLine(llSRow, vbext_pk_Proc)
llLine1 = olPane.CodeModule.ProcBodyLine(slProcName, vbext_pk_Proc)
llCountLines = olPane.CodeModule.ProcCountLines(slProcName, vbext_pk_Proc)
llStartLine = olPane.CodeModule.ProcStartLine(slProcName, vbext_pk_Proc)
llEndLine = llStartLine + llCountLines – 1

' Find Dim Line.
llCompLine1 = llLine1

Do
 slOLine1 = Trim$(olPane.CodeModule.Lines(llCompLine1, 1))

 If Left$(slOLine1, 4) = "Dim " Then
 Exit Do
 ElseIf Left$(slOLine1, 6) = "Const " Then
 Exit Do
 ElseIf Left$(slOLine1, 7) = "Static " Then
 Exit Do
 End If
 llCompLine1 = llCompLine1 + 1
 ilSanityCheck = ilSanityCheck + 1

 If llCompLine1 >= llEndLine Then

 ' End of module.
 subMsgBox "@End of module."
 Exit Sub

 End If

 If ilSanityCheck > 200 Then

 ' Assume no Dims.
 subMsgBox "@No Dims."
 Exit Sub

 Page 30/ 324

 End If

Loop
llLine1 = llCompLine1

Do

 ' Move to next dim line
 slOLine1 = Trim$(olPane.CodeModule.Lines(llCompLine1, 1))
 slLine1 = UCase$(slOLine1)

 slDef1 = Split(slLine1, " ")
 ilLenDef1 = Len(slDef1(0))

 Select Case slDef1(0)
 Case "DIM", "PUBLIC", "CONST", "STATIC"

 olPane.SetSelection llCompLine1, 1, llCompLine1, 1
 llCompLine2 = llCompLine1 + 1
 If llCompLine2 > llStartLine + llCountLines - 1 Then
 Exit Do
 End If
 slOLine2 = Trim$(olPane.CodeModule.Lines(llCompLine2, 1))
 slLine2 = UCase$(slOLine2)

 slDef2 = Split(slLine2, " ")
 If UBound(slDef2) < 0 Then
 Exit Do
 End If
 ilLenDef2 = Len(slDef2(0))
 Select Case slDef2(0)
 Case "DIM", "CONST", "STATIC"
 Case Else
 Exit Do
 End Select

 ' Strip to variable names
 slA1 = Split(Mid$(slLine1, ilLenDef1 + 2))

 Page 31/ 324

 slA2 = Split(Mid$(slLine2, ilLenDef2 + 2))

 ' Compare
 If slA2(0) < slA1(0) Then

 ' Swap
 olPane.CodeModule.ReplaceLine llCompLine1, slOLine2
 olPane.CodeModule.ReplaceLine llCompLine2, slOLine1

 ' Reset the indexes to 1 and 2 to start again
 llCompLine1 = llLine1

 Else

 ' Increment
 llCompLine1 = llCompLine1 + 1
 llCompLine2 = llCompLine2 + 1

 End If

 Case Else
 llCompLine1 = llCompLine1 + 1
 End Select

 If llCompLine1 > llStartLine + llCountLines - 1 Then
 Exit Do
 End If

Loop

Set olPane = Nothing
'

End Sub

 Page 32/ 324

To try running it:

• Create a new module in the VBE of your application of choice, Excel, Word, etc
There’s a reason for putting it in its own module. I’ll get to that in a bit and do a walkthrough as
well. Even better would be a different project if you know how to set references to it. I’ll talk
about that along with creating an add-in later.

• Copy the code and paste it into the new module.

• Be careful not to include two Option Explicit statements because you have set new modules to
include Option Explicit, haven’t you?

• SAVE THE WORKBOOK!

• Put your cursor inside the code you have just created.

• Open the Macros menu.
o Tools
o Macros…

• Run the procedure you’ve just created: subccSortdIMS.
o You may want to try stepping through instead of running it. You c an use the step icon or

F8 to do that.

Okay, Here’s the kicker.

It won’t work.

Gotchya!

You’ll need to Kill the application and re start it.

Aren’t you glad though, that you saved the workbook and don’t have to rebuild it again!

There’s a Sub being called that you haven’t got. subMsgBox.

Aside: Try using Debug/Compile to pick up stuff like this. it’s very very fast, and you don’t need to
actually run any code. Be aware though, that it compiles the whole project and not just the module or
procedure you are in. We’ll do more with compiling later, a lot more.

Anyroad, get around this by either:

• Commenting the call out or deleting it. There are two of them.

• Changing subMsgBox to MsgBox.

• Adding a simple procedure called subMsgBox (Er, recommended, because later we’ll add a pretty
complex subMsgBox anyway.)

 Ala:

 Page 33/ 324

6 subMsgBox

Sub subMsgBox(_
 spMsg As String _
)

MsgBox spMsg

' ***
End Sub

After correcting for subMsgBox try again.

It still won’t work.

HAH!

Remember Remember!

Tenet 1!

Don’t do it to yourself!

Okay. I’ve cheated a bit just to show ya what happens, coz ya need to know this stuff and recognize it!

Now!:

• Add a new module

• Add a sub… any sub

• Copy just the Dims from the sortccdims proc to it

• Leave the cursor in the sub

• Open the macros menu

• Run sortccdims

Neat huh!

So that there is no confusion in thje next bit, delete that new module.

 Page 34/ 324

I’ve done this in Excel, Word, Access and Powerpoint so far, using exactly the same code. Remember
that we’re adjusting Code in the VBE and not doing anything in the host application.

If it doesn’t work for you, TELL ME!

 Page 35/ 324

subccSortDims Walkthrough

Okay. I said I’d do a walkthrough.

Here is the subccSortDims code again with line numbers and breakdown. Note the line numbers. All the

functions we use are going to use the MODULE line numbers because that’s what the VBE references.
Also note that the last line of the module is a blank one. You can’t get rid of this and it is counted as being
with the last procedure. Sometimes there’s more than one. Try it.

• Add a new module

• Add a sub

• Press CtrlEnd

Your cursor will be one line below the End Sub.

ALSO note… they start at ONE not ZERO!

7 subccSortDims walkthrough

Module
Line

Procedure
Line

1

Option Explicit

2 1

3 2

4 3

5 4

See Some module anatomy above.

6 5 Sub subccSortDims()

Some comments about the proc… BATCH = Not interactive, Assumptions and so on. See Appendix C My
Personal Naming Convention and procedure layout

7 6 ' BATCH.

8 7 '

9 8 ' Sort dims in a procedure.

10 9 ' Assume dims are together.

11 10 ' Assume one to a line.

12 11 ' Assume <Definition> Name

 Page 36/ 324

13 12 ' Bubble sort - This is a slow sort method

14 13 ' just so we can see it work :-)

15 14 '

16 15

17 16 Dim slProcName As String

18 17 Dim slLine2 As String

19 18 Dim slLine1 As String

20 19 Dim slA2() As String

21 20 Dim slA1() As String

When Lisa first wrote this, she used "Object". We’re more specific now and use VBIDE.CodePane.

22 21 Dim olPane As Object

We now use lngl for Local Long instead of ll.

23 22 Dim llCompLine2 As Long

24 23 Dim llCompLine1 As Long

25 24 Dim slOLine1 As String

26 25 Dim slOLine2 As String

27 26 Dim slDef1() As String

We use Long almost exclusively now rather than integer.

28 27 Dim ilLenDef1 As Integer

29 28 Dim slDef2() As String

30 29 Dim ilLenDef2 As Integer

31 30 Dim llStartLine As Long

32 31 Dim llSRow As Long

33 32 Dim llSCol As Long

34 33 Dim llLine1 As Long

35 34 Dim llERow As Long

36 35 Dim llECol As Long

37 36 Dim llCountLines As Long

38 37 Dim ilSanityCheck As Integer

39 38 Dim llEndLine As Long

40 39

Set up a codepane object for where the cursor is in the sub. For this example, where you placed it. Setting a
variable makes the code more readable and a mite shorter instead of using Application.VBE.ActiveCodePane
all the time.

41 40 Set olPane = Application.VBE.ActiveCodePane

This will get the selection. If nothing is selected it will return the cursor position in the code. Ie: Where you
put it. More on this later but for the moment we just need any module line number of where the cursor is to

 Page 37/ 324

get the procedure name. This could be the start or end line being returned from the GetSelection call. That is,
unless your selection spans more than one procedure! You’re usually safe if you use the selection start line
number.
Returned are… llSRow = Module Start Row/line number, llSCol = StartCol, llERow = Module End Row/line
number, llECol = End Col. Remember that at this point, in this example, we are in THIS sub somewhere.
Wherever you’ve placed the cursor.

42 41 olPane.GetSelection llSRow, llSCol, llERow, llECol

43 42

Get the procedure name of the returned start line from GetSelection. vbext_pk_Proc, the Procedure kind, will
be returned as well. This is the only function that you can use to get this.

44 43 slProcName = olPane.CodeModule.ProcOfLine(llSRow, vbext_pk_Proc)

Get the line on which the Declaration/Definition is for that proc name… Sub/Function/Property. In this case 6.

vbext_pk_Proc returned from the previous call is needed.

45 44 llLine1 = olPane.CodeModule.ProcBodyLine(slProcName, vbext_pk_Proc)

Get the count of lines in this procedure. In this case 149.

46 45 llCountLines = olPane.CodeModule.ProcCountLines(slProcName, vbext_pk_Proc)

Get the start line of the procedure. In this case…2.

47 46 llStartLine = olPane.CodeModule.ProcStartLine(slProcName, vbext_pk_Proc)

Calculate the end line of the procediure. In this case 150.

48 47 llEndLine = llStartLine + llCountLines – 1

49 48

Loop around the procedure code grabbing each MODULE line starting at each sub definition line. Test each

code line for Dim Const or Static. This gives us the START line number of the Dims for that sub. Check that
we’ve not gone past the end of the procedure.

50 49 ' Find Dim Line.

51 50 llCompLine1 = llLine1

52 51

53 52 Do

Grab the line.

54 53 slOLine1 = Trim$(olPane.CodeModule.Lines(llCompLine1, 1))

55 54

Test for Dim, Const, Static.

56 55 If Left$(slOLine1, 4) = "Dim " Then

57 56 Exit Do

 Page 38/ 324

58 57 ElseIf Left$(slOLine1, 6) = "Const " Then

59 58 Exit Do

60 59 ElseIf Left$(slOLine1, 7) = "Static " Then

61 60 Exit Do

62 61 End If

63 62 llCompLine1 = llCompLine1 + 1

64 63 ilSanityCheck = ilSanityCheck + 1

65 64

66 65 If llCompLine1 >= llEndLine Then

67 66

68 67 ' End of module.

69 68 subMsgBox "@End of module."

70 69 Exit Sub

71 70

72 71 End If

73 72

Just to be sure! We can be pretty certain we should hit a Dim by line 200.
This came back to bite my bottom when trying to sort a proc with no Dims!

74 73 If ilSanityCheck > 200 Then

75 74

76 75 ' Assume no Dims.

77 76 subMsgBox "@No Dims."

78 77 Exit Sub

79 78

80 79 End If

81 80

82 81 Loop

83 82 llLine1 = llCompLine1

84 83

We have the start line of the Dims and are in fact “on” it. Start the sort. I’ve mentioned why I chose this sort
of sort. Watching it work you can see it’s not just, abracadabra now you see it, magic.

85 84 Do

86 85

87 86 ' Move to next line

Get that line.

88 87 slOLine1 = Trim$(olPane.CodeModule.Lines(llCompLine1, 1))

89 88 slLine1 = UCase$(slOLine1)

90 89

 Page 39/ 324

Split our new line up delimited be space. We use split here because we want the variable name. Above, using
if..elseif.. endif, is very slighty faster.

91 90 slDef1 = Split(slLine1, " ")

92 91 ilLenDef1 = Len(slDef1(0))

93 92

Test our new line to see if that’s a Dim line as well.

94 93 Select Case slDef1(0)

95 94 Case "DIM", "PUBLIC", "CONST", "STATIC"

96 95

97 96 olPane.SetSelection llCompLine1, 1, llCompLine1, 1

98 97 llCompLine2 = llCompLine1 + 1

99 98 If llCompLine2 > llStartLine + llCountLines - 1 Then

100 99 Exit Do

101 100 End If

Get the next line.

102 101 slOLine2 = Trim$(olPane.CodeModule.Lines(llCompLine2, 1))

103 102 slLine2 = UCase$(slOLine2)

104 103

105 104 slDef2 = Split(slLine2, " ")

106 105 If UBound(slDef2) < 0 Then

107 106 Exit Do

108 107 End If

109 108 ilLenDef2 = Len(slDef2(0))

110 109 Select Case slDef2(0)

111 110 Case "DIM", "CONST", "STATIC"

112 111 Case Else

113 112 Exit Do

114 113 End Select

115 114

116 115 ' Strip to variable names

117 116 slA1 = Split(Mid$(slLine1, ilLenDef1 + 2))

118 117 slA2 = Split(Mid$(slLine2, ilLenDef2 + 2))

119 118

Compare the two variable names from adjacent lines to see which is the greater. Remember… We’ve stripped
the "Dim " and so on and are just comparing variable names.

120 119 ' Compare

121 120 If slA2(0) < slA1(0) Then

122 121

Swap the lines by replacing them both with the other.

 Page 40/ 324

123 122 ' Swap

124 123 olPane.CodeModule.ReplaceLine llCompLine1, slOLine2

125 124 olPane.CodeModule.ReplaceLine llCompLine2, slOLine1

126 125

127 126 ' Reset the indexes to 1 and 2 to start again

128 127 llCompLine1 = llLine1

129 128

130 129 Else

131 130

132 131 ' Increment

Increment both line counts.

133 132 llCompLine1 = llCompLine1 + 1

134 133 llCompLine2 = llCompLine2 + 1

135 134

136 135 End If

137 136

138 137 Case Else

139 138 llCompLine1 = llCompLine1 + 1

140 139 End Select

141 140

142 141 If llCompLine1 > llStartLine + llCountLines - 1 Then

143 142 Exit Do

144 143 End If

145 144

146 145 Loop

147 146

148 147 Set olPane = Nothing

149 148 '

150 149 End Sub

151 150

 Page 41/ 324

Functions used from the Extensibility library in subccSortDims

We will come across more of these functions as we go on. There aren’t actually all that many.
Anyway, I’ve expanded the calls here because they are meant as examples. You will also see I’ve used my
“more up to date for me and my naming convention”, variable prefix of lng for long instead of a single l.
In the subccsortdims code, we used:

1. Application.VBE.ActiveCodePane.GetSelection _
<ModStartLine>, <StartCol>, <ModEndLine>, <EndCOl>

We called this to find the line number the cursor is on which is <ModStartLine>. We need this to use
for the calls, SetSelection, ReplaceLine, and Lines.

2. slProcName = _

Application.VBE.ActiveCodePane.CodeModule.ProcOfLine(_
<ModLine>, vbext_pk_Proc _
)

For ProcBodyLine, ProcCountLines, and ProcStartLine, we need the procedure name. PocOfLine will
return it. For those functions, we also need to know the pk (procedure kind) or type. ProcOfLine

returns that as well. In fact, it’s the only procedure that will give us the proc type. Once we have it,
we can plug it into the other calls. This makes where you put this call important. It has to be before
the calls that need vbext_pk_Proc.

3. lnglLine1 = _

Application.VBE.ActiveCodePane.CodeModule.ProcBodyLine(_
<ProcName>, vbext_pk_Proc _
)

This gives us the declaration line number for the procedure, the line the Sub/Function is on. We use
vbext_pk_Proc here from .ProcOfLine.

4. lnglCountLines = _

Application.VBE.ActiveCodePane.CodeModule.ProcCountLines(_
<ProcName>, vbext_pk_Proc _
)

We need the count of lines in the procedure so that we don’t go too far. Again we use vbext_pk_Proc
here from .ProcOfLine.

5. lnglStartLine = _

Application.VBE.ActiveCodePane.CodeModule.ProcStartLine(_
<ProcName>, vbext_pk_Proc _
)

Gives us the real start line number of the procedure. And again we use vbext_pk_Proc here from
.ProcOfLine.

 Page 42/ 324

6. slLines = _

Application.VBE.ActiveCodePane.CodeModule.Lines(_
<StartLine>, <NumberOfLines> _
)

Gets all the lines from startline for a number of lines. If there is more than one line, they are separated
by vbCrLf.

7. Application.VBE.ActiveCodePane.SetSelection _
<ModStartLine>, <StartCol>,<ModEndLine>,<EndCol>

Sets the selection. This is the opposite of GetSelection. And it moves the cursor to the set selection
as well. So, this is a way of going to a place in your code.

8. Application.VBE.ActiveCodePane.CodeModule.ReplaceLine _
<ModLine>, <String>

Replaces a single line with a String. We can use the line number/s from GetSelection here.

These are some of the most used calls you will use. We’ll get to some others in due course. You can see
that they are all “connected” with each other through the Procedure Name, the Procedure Type, and the
Module line number.

A better understanding of what’s going on is if you think of doing all of this manually. A sort of pseudocode
if you will.

8 Bubble sort psuedocode

Loop down the procedure till we get to a Dim
Loop down line by line

Get the next line
If that's also a Dim

 If that's a dim as well
Compare the variable names

If the top line variable is less than the next line variable

Swap the lines
End if

Endif

end if

End loop

 Page 43/ 324

9 Bubble sort Manual procedure

Go to the top of the procedure
Move the cursor down the procedure till we get to a Dim
Start a loop

Look at the next line
If that's also a Dim

Compare the variable names
If the top line variable is less than the next line variable

Swap the lines
End if

Move to the bottom line

end if

End the loop

 Page 44/ 324

Why Sort the dims

Big question this.

We could get a bit philosophical here, but the simple answer is that it makes variable definitions and
groups of definitions easier to find when reading the code. Another is that it can highlight duplicates. And
it’s a bit prettier.

So! How do YOU, normally do Dims?

Scenario 1 - NOOOOOO DIMS

You may have gone minimalist and left out Option Explicit and have no dims at all.

Not much to say here except if you can live with yourself doing this go for it. Having said that I actually
know of a poster to some forums who does this. He’s pretty good too, but people have had problems

with his code because of no Dims and no Option Explicit. There is code in CodeCode to check for variables
in a procedure and if there isn’t a Dim for it insert one. There is also code to go the other way and delete
any Dims that aren’t used in a procedure. They are both considerably large pieces of VBA code. The code
is on thinkz1.com. It’s free. Problems? My email is in the appendices.

Scenario 2 – Nicely grouped DIMS

You may have all of the Dims set out nicely in groups with separator lines and comments at the end.

' Procedure details --

Dim slProcName As String ' Procedure Name

Dim llStartLine As Long ' Procedure Star of Code

Dim llSRow As Long ' Start Module line of cursor

Dim llSCol As Long ' Start Column for cursor/selection

Dim llERow As Long ' End Module line for cursor

Dim llECol As Long ' End Column for cursor/selection

Dim llCountLines As Long ' Count of procedure lines

Dim llEndLine As Long ' End Module line of procedure

' Work Variables for Sort --

Dim llLine1 As Long ' Module line number of line 1 being

looked at

Dim slLine2 As String ' Line 2

 Page 45/ 324

Dim slLine1 As String ' Line 1

Dim slA2() As String ' Array of line 2

Dim slA1() As String ' Array of line 1

Dim llCompLine2 As Long ' Modue line number 1 being compared

Dim llCompLine1 As Long ' Module line number 2 being

compared

Dim slOLine1 As String ' Original Line 1

Dim slOLine2 As String ' Original Line 2

Dim slDef1() As String ' Split of Line 1 on space

Dim ilLenDef1 As Integer ' Length of 1st element of slDef1

Dim slDef2() As String ' Split of Line 2 on space

Dim ilLenDef2 As Integer ' Length of 1st element of slDef2

' Other --

Dim olPane As Object ' Active Code Pane

That would be difficult to sort indeed! Or would it?
The actual line comparison in subccSortDims picks out the variable names from the Dim/Const/Static and

compares just those. When it comes to replacing a line in the bubble sort it replaces the whole line. This
means that those comments at the end will still be there and with the correct variable!

Scenario 3 –All DIMS on a single line

You may have done the same as a lot of people do in VBS, and defined everything as variants in a single
line.

Dim slProcName, slLine2, slLine1, slA2(), slA1(), olPane, llCompLine2, llCompLine1, slOLine1, slOLine2,
slDef1(), ilLenDef1, slDef2(), ilLenDef2, llStartLine, llSRow, llSCol, llLine1, llERow, llECol, llCountLines,
ilSanityCheck, llEndLine

You should see though, that the names of the variables here give at least a clue to what type of variable
is expected even if they are all variants. Clever eh!

 Page 46/ 324

Scenario 4 –DIMS defined as they are used

You may have defined the Dim as you use them in the middle of the code possibly as a reset. Reseting in
this way doesn’t actually work because VBA defines all of the Dims up front anyway. Try running the code
below… You’ll get the number 3 printed in the IM even though the code does the Dim three times.

Sub CountInsideLoop()

'https://excelmacromastery.com/vba-dim/

 Dim i As Long

 For i = 1 To 3

 Dim count As Long

 count = count + 1

 Next i

 ' count value will be 3

 Debug.Print count

End Sub

After all that!

VBS seems to have changed the backdrop because it only uses variants. In VBS, writing Dim a,b,c,d seems
to make more sense. Howerver, from zillions of programmers writing gadzillions of lines of VB/VBA code

for eons, the preferred, best practice, and okay yes, accepted method, even though you may as an
individual baulk at that, is one definition per line defined and typed properly and all at the top of the code.

The big big big reason for this is maintenance. You REALLY want to be able to read the code in a couple

of years time. It may be YOU who has to change it! I have coined and like the expression:

Remember! You WILL forget!

Here’s another very famous quote:

Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live. Code for readability.

John F. Woods in 1991

 Page 47/ 324

And an interesting link in the links appendix about NASA Defensive programming.

 Page 48/ 324

Sort a selection of Dims

Let’s suppose we have scenario 2 where we’ve laboriously commented each and every variable at the end
of the line neatly, and set them up in sections and got everything to look pretty and gorgeous. I propose,

it would still be useful to have each SECTION sorted. Depending on the variable names, it would put all
the numbers together and all of the strings together and make finding variables within a section fairly
easy. That’s the theory anyway and where we’re going with the next bit of code.

UPDATE: MZ-Tools 8 has a feature to sort selected lines.

We’ll be using GetSelection a bit more here.

If you are into reading code at all, and I strongly suggest that you at least give it a go, you will realize the

code below is almost, identical to subccSortDims.

This can be literally seen by copying the code to separate text files and using the wonderful and free
WinMerge program.

10 subccSortSelectedDims

Sub subccSortSelectedDims()
' SELECTION.
'
' Sort SELECTED dims in a procedure.
' Assume dims are together.
' Assume one to a line.
' Assume <Definition> Name
' Bubble sort - This is a slow sort method
' but used here to be the same as
' SortDims. Using an array makes it
' quicker though.
'

Dim slVar2 As String
Dim slVar1 As String
Dim slProcName As String
Dim slLine2 As String
Dim slLine1 As String
Dim slA2() As String

 Page 49/ 324

Dim slA1() As String
Dim olPane As Object
Dim llCompLine2 As Long
Dim llCompLine1 As Long
Dim intlI As Integer
Dim slOLine1 As String
Dim slOLine2 As String
Dim slDef1() As String
Dim ilLenDef1 As Integer
Dim slDef2() As String
Dim ilLenDef2 As Integer
Dim llStartLine As Long
Dim llSRow As Long
Dim llSCol As Long
Dim llLine1 As Long
Dim llERow As Long
Dim llELine As Long
Dim llECol As Long
Dim llCountLines As Long
Dim ilSanityCheck As Integer
Dim slSelectionLines() As String
Dim slSelection As String
Dim vbcplCodePane As VBIDE.CodePane
Dim vbcmlCodeModule As VBIDE.CodeModule

Set olPane = Application.VBE.ActiveCodePane
olPane.GetSelection llSRow, llSCol, llERow, llECol

slProcName = olPane.CodeModule.ProcOfLine(llSRow, vbext_pk_Proc)
llLine1 = llSRow
llCountLines = llERow – llSRow
llStartLine = llSRow

llCompLine1 = llSRow
Do

 ' Move to next dim line
 slOLine1 = Trim$(olPane.CodeModule.Lines(llCompLine1, 1))
 slLine1 = UCase$(slOLine1)

 Page 50/ 324

 slDef1 = Split(slLine1, " ")
 ilLenDef1 = Len(slDef1(0))

 Select Case slDef1(0)
 Case "DIM", "PUBLIC", "CONST", "STATIC"

 olPane.SetSelection llCompLine1, 1, llCompLine1, 1
 llCompLine2 = llCompLine1 + 1
 If llCompLine2 > llStartLine + llCountLines - 1 Then
 Exit Do
 End If
 slOLine2 = Trim$(olPane.CodeModule.Lines(llCompLine2, 1))
 slLine2 = UCase$(slOLine2)

 slDef2 = Split(slLine2, " ")
 If UBound(slDef2) < 0 Then
 Exit Do
 End If
 ilLenDef2 = Len(slDef2(0))
 Select Case slDef2(0)
 Case "DIM", "CONST", "STATIC"
 Case Else
 Exit Do
 End Select

 ' Strip to variable names
 slA1 = Split(Mid$(slLine1, ilLenDef1 + 2))
 slA2 = Split(Mid$(slLine2, ilLenDef2 + 2))

 ' Compare
 If slA2(0) < slA1(0) Then

 ' Swap
 olPane.CodeModule.ReplaceLine llCompLine1, slOLine2
 olPane.CodeModule.ReplaceLine llCompLine2, slOLine1

 ' Reset the indexes to 1 and 2 to start again
 llCompLine1 = llLine1

 Page 51/ 324

 Else

 ' Increment
 llCompLine1 = llCompLine1 + 1
 llCompLine2 = llCompLine2 + 1

 End If

 Case Else
 llCompLine1 = llCompLine1 + 1
 End Select

 If llCompLine1 > llStartLine + llCountLines - 1 Then
 Exit Do
 End If

Loop

Set olPane = Nothing
' ***
End Sub

We’re NOT going to walk through this, just point out the differences. Below is a screen shot of the two
pieces of code in winmerge. I know it looks funny but I’ve elongated the picture so you can, I hope, at
least sort of read the code. Pun intended hehehe.

On the left is the original subccSortDims.

On the right is subccSortSelectedDims.

It’s fairly easy to see I think, that there is a whole do..loop of code dedicated to finding the first Dim line
on the left in subccSortDims that’s totally missing on the right in subccSortSelectedDims.

The left shows the code getting the module start line and count of lines numbers using the VBE calls
ProcStartLine, ProcCountLines.

Now the clever bit. On the right, those calls are missing. Not there!

This is because we have the start and end line numbers returned in the GetSelection call mentioned
above!

 Page 52/ 324

11 GetSelection parameters

olPane.GetSelection llSRow, llSCol, llERow, llECol
llSRow=Module start line number of selection
llSCol= start column number of selection
llERow=Module end line number of selection
llECol=End column number of selection

5 WinMerge 1

 Page 53/ 324

Now we just calculate the count of lines and away we go!

12 Setting lines to sort

 llLine1 = llSRow

 llCountLines = llERow - llSRow
llStartLine = llSRow
llCompLine1 = llSRow

Here’s a shot of both of the subs a bit further down.

6 WinMerge 2

But I can’t read that! I hear you scream! It’s too small! Not the point. The point is that both left and right

windows are white, meaning that the rest of the code, the actual sort code, is IDENTICAL!

 Page 54/ 324

Splitting up Dims from a single line

Let’s move on. We’ve looked at scenario 2. Let’s look at scenario 3. And guess which scenario we’ll look
at next. I know I’ve skipped scenario 1. There’s a reason for that, it’s complicated. But we will get to that,
or at least discuss it.

We may or may not have a problem with:

13 All Dims on a single line

Dim slProcName, slLine2, slLine1, slA2(), slA1(), olPane, llCompLine2, llCompLine1, slOLine1,

slOLine2, slDef1(), ilLenDef1, slDef2(), ilLenDef2, llStartLine, llSRow, llSCol, llLine1, llERow,

llECol, llCountLines, ilSanityCheck, llEndLine

We’re NOT going to even entertain sorting the items on a line and replacing it. But, reading the line in,
zapping the Dim, removing spaces, splitting it on ",", sorting the trimmed array and doing a Join should
work if you really want to.

If we want to sort the Dims properly though they really should all be on different lines by themselves.

14 One Dim per line

Dim slProcName As String
Dim slLine2 As String
Dim slLine1 As String
Dim slA2() As String
Dim slA1() As String
Dim olPane As Object
Dim llCompLine2 As Long
Dim llCompLine1 As Long
Dim slOLine1 As String
Dim slOLine2 As String
Dim slDef1() As String
Dim ilLenDef1 As Integer
Dim slDef2() As String
Dim ilLenDef2 As Integer
Dim llStartLine As Long
Dim llSRow As Long
Dim llSCol As Long
Dim llLine1 As Long

 Page 55/ 324

Dim llERow As Long
Dim llECol As Long
Dim llCountLines As Long
Dim ilSanityCheck As Integer
Dim llEndLine As Long

The problem of course, is assigning a TYPE to a variable. Given the original line, all of the variables would
be assigned as variant.

Everybody eschews "variant", and with good reason. The best/worst is that you don’t know, without
testing, what type of variable the variable is! How many times have I heard "***k! It’s an object!" being
expressed, er, loudly, and in er, surprise! Hmmmm.

Anyroad, remember that naming thingy? Oh yes, umm, convention. Lower case s = string, lower case i =
integer, lowercase l = long, lower case lng = long, and I’ve not mentioned it before but lower case o =
object.

We can make use of that!

The only other alternative is to let everything default to type variant.

Strangely enough, a lot of the "accepted" and normally used naming conventions on forums, begin

similarly. s For string, o for object and so on 😊. There are some links in the appendices, but I would

actually advocate making up your own Naming Convention, for the simple reason that it’s easier to stick

to, rather than remember someone elses! Use someone elses by all means. TOTALLY free to use mine!
Hehehe. But I’ll bet you will, and would expect you to, adjust it to suit yourself. All I can say to that is,

GOOD ON YER!

Let’s go with mine for now though…s=string, i=integer, l=long, lng=long, o=object.

And oh, PLEASE PLEASE PLEASE, NEVER use single letters for variables! Good for Q&D and demos
and examples and too often doesn’t get changed in the final code. What the, er, hell, does i=j+1 mean?
We can make a damn good guess, after reading the code, quite often someone elses, but in too many

cases, You. Will. Never. Ever. Ever. Ever. Really. KNOW. Actually, in the spirit of bacwkards
conpatability, the + sign, is still a concatenation in VBA, so it could be adding srings together! I’ll Bet a lot
of you din’t realise that! Some habits are good. My advice FWIW… Develop a habit!

Generally, given some sort of naming scheme, we need to:

• Pick up the line.

• Split it up

• Look at the start letter/s of each variable

• Assign a type reflective of the start letters if relevant

• Write a single Dim line for that variable

 Page 56/ 324

• Loopy doopy

Most of this is just string manipulation. But we’re gonna do it anyway. Here is the code to do that.
Because it’s a function we need a sub to test it. That’s at the top. Remember my naming setup?

15 fncGuessVarType

 Sub subtestfncGuessVarType()
MsgBox fncGuessVarType("llModuleEndLine")
' ***
End Sub
Function fncGuessVarType(_
 spName As String _
) _
 As String
' This is a function so that different "naming conventions" can
' be used.
'
' It has nothing to do with the VBE and is simple text/string manipulation.
'
' It's here so that you can code and build on your own convention.
'
' The convention used here is <prefix><scope><Name>
' Where:
' <prefix> is lower case and represents the variable type.
' <scope> is lower case and a single letter.
' <Name> is the name of the actual variable name and begins with a capitol letter.
'
' ### Notes:
' THis is very specific to this book and my "real" proc encompasses many
' more types that are read from an INI file. This ia a VERY limited
' function as it looks for prefixes hard coded here.
'
' THis assumes that spName is in the above format.
'

Dim slItemvalue As String
Dim slItemName As String
Dim lnglM As Long

 Page 57/ 324

Dim slLookForStub As String
Dim slType As String
Dim slPrefixStub As String
Dim slPreAndSuffixes() As String
Dim slPrefix As String
Dim ilN As Integer
Dim ilChr As Integer
Dim slChr As String
Dim slName As String

slName = spName

slPrefix = vbNullString
slPrefixStub = vbNullString
slType = vbNullString

' You can get and fill this array from anywhere.
' I'm using an INI file in my "real" stuff but it could
' equally be a text file, database, or the registry.
ReDim slPreAndSuffixes(1 To 5, 1 To 2)

slPreAndSuffixes(1, 1) = "Long"
slPreAndSuffixes(1, 2) = "l"

slPreAndSuffixes(2, 1) = "Integer"
slPreAndSuffixes(2, 2) = "i"

slPreAndSuffixes(3, 1) = "Long"
slPreAndSuffixes(3, 2) = "lng"

slPreAndSuffixes(4, 1) = "Object"
slPreAndSuffixes(4, 2) = "o"

slPreAndSuffixes(5, 1) = "String"
slPreAndSuffixes(5, 2) = "s"

' Find the first capitol letter.
' A=65 Z=90 [\]^_` a=97 z=122
For ilN = 1 To Len(slName)

 Page 58/ 324

 slChr = Mid$(slName, ilN, 1)
 ilChr = Asc(slChr)

 If ilChr < 91 _
 And ilChr > 64 Then
 Exit For
 End If

 If ilChr < 123 _
 And ilChr > 90 Then
 slPrefix = slPrefix & slChr
 End If

Next ilN

If slPrefix <> vbNullString Then

 ' Chop the scope letter off.
 slPrefixStub = Left$(slPrefix, Len(slPrefix) - 1)
 slLookForStub = slPrefixStub

 For lnglM = 1 To UBound(slPreAndSuffixes, 1)

 slItemName = slPreAndSuffixes(lnglM, 1)
 slItemvalue = slPreAndSuffixes(lnglM, 2)

 If InStr(slItemvalue, slLookForStub) > 0 Then

 ' Found it. Get out.
 slType = slItemName
 Exit For

 End If

 Next lnglM

End If

 Page 59/ 324

' Have we found something but it's not valid?
Select Case slType
Case ""

 ' Catch all.
 slType = "Variant"

End Select

fncGuessVarTypeG = slType
' ***
End Function

Couple of things here.

You’ll see that the types are hard coded into an array. You can load that array from anywhere. Typically,
this will be a text file, an INI file or the registry. As an example, at the moment I load these from an INI
file, and FYI here is my current INI file entry for that.

16 INI File entries for my pre/suffixes

[PreAndSuffixes]
DS_PreAndSuffixes="Prefixes/suffixes used to denote variable types."

D_Exceptions="These prefixes are used by the 'system' for various constants and are exempted from insertdims and so
on."
Exceptions=vb,vbext,xl,wd,cc,mso,tvw, fm, _fm, tli

Long=lng,l,ln
single=si,sng
Integer=i,int,n
String=s,str
Boolean=bln,b
Object=o,obj
Double=d,dbl,db
Variant=v
Node=nd
Range=r,rng,range
WorkBook=wb
WorkSheet=ws

 Page 60/ 324

Table=tbl
UserForm=frm
DataBase=db
Document=doc
Recordset=rs
Dictionary=dic
Procedure=sub,fnc,subtest,A_subcc,subcc
VBIDE.VBPRoject=vbp
VBIDE.CodePane=vbcp
VBIDE.CodeModule=vbcm
VBIDE.vbComponent=vbc
CapitalizeFirstLetter=Yes ;Yes/No

[ScopeLetters]
Local=l
Module=m
Global=g
Public=g
Project=g

 Parameter=p

 Page 61/ 324

What’s in a name

Corny title yeah, but relevant, because that’s what the last procedure was all about.

And yes, I know We’re repeating things, and you know what? You’ll see me do it again, and again, and
maybe again!

And again 😊, you can refer to my personal naming convention in the appendices. You may already have
noticed by looking at the list of Dims in subccSortDims that my string variables begin with a lowercase s,
integers begin with a lowercase i, and long integers, long, begin with a lowercase l. In fact, I wrote some
of the code here a while ago and now always use lower case lng for Long. The very sharp eyed, will note
that there’s a lowercase l after that and before the first capital letter of the actual variable name. In my
setup this is to denote where the variable comes from. A sort of scope. A lower-case l next to the variable
is l = local. I use p for a parameter, m for a private module level variable and g for project level global or
public variables.

Incidentally:

17 Declaration as Global

Global str as string

… Is a valid definition in the declarations. The variable will be Public.

Stick with what you choose. After a while it becomes automatic.

Having said that, naming conventions can sometimes get a bit cumbersome. For example, you may want
the prefix set up so you know that this is a long and a handle and is a variable local to the procedure. As
I say in the appendix though, it can get a bit silly.

For example,

 lngtpmID.

The prefix denotes a Long in a Type at Module level. It’s longer than the variable name!

Sooooo, just be careful and have a think.

I can’t emphasise enough, that ANY sort of naming convention, gives a
MASSIVE advantage over not using one.

 Page 62/ 324

Recap number one!

So, what have we done/learned:

• Need a reference to "Microsoft Visual Basic for Applications Extenibility 5.3"

• Created code to update code

• Used a number of functions contained in the MS VBA Extensibility Library

• DON’T do it to ourselves

• Can use the Compile option in the debug menu

• F8 is tricky sometimes

• Everything uses MODULE line numbers

• There is a sort of order to using the VBE functions to feed the next one

• A sub does not necessarily start at the declaration line but the code does.

• The last line/s in a module are empty and are attributed to the last procedure.

• Line numbers of modules start at ONE not ZERO.

• Save a lot
• vbext_pk_Proc is required in functions and is returned by .ProcOfLine.

• It’s useful to use a naming convention of some sort.

Yes, I know We’re repeating some things, and you know what? You’ll see me do it again, and again, and
maybe again!

 Page 63/ 324

Where Are We

We’ll get to use fncGuessVarType in a bit. But First! Let’s write another sub that does have something
to do with the VBE.

When writing code to alter code, you’ll need to know where you are in the project and module you are
currently in. Let’s write a sub to tell you that. We’ll call it WhereArweWe. You’ll use this or its alter ego,

more on that later, a lot!

The following code returns some key items:

• Project Object

• Component Object

• Codepane object

• Project name

• Module name

• Procedure name.

• Module line where the cursor is.

• Module Start Line of Procedure code.

• Number of Lines of code.

• Module End Line of Procedure code.

This will expand and change as you do more in the VBE and need more information about a procedure.
There is one calculated value there, Module End Line of Procedure. This is in the procedure we’ll write
rather than calculated in the calling code because you don’t want to have to calculate it multiple times
and simply because, it’s simpler.

We’re going to implement WhereAreWe in TWO ways. As a Sub and as a Class.

Here’s the sub code. Again, there is a sub to test the sub at the top.

You’ll see that I’ve put a "Stop" at the end of the test sub. This is so you can examine and verify that
subWhereAreWe is returning what it should by using the immediate window. As stated in the comments
in the proc, the codepane is where most of the work is done. Setting an object to it is a good idea to
reduce typing. However, it may be that you never use some of the objects. But they’re there if you ever
want to.

Aside: I use Stop quite a bit. It’s handy because if you set a breakpoint and the process loops or something
and you have to kill it, the stop is still there. There’s no need to reset the breakpoint. Using Find and
Replace it’s also pretty simple to remove them. It’s also the only way to put a break into the auto run
procedure. You can put a breakpoint there and run it separately, but that doesn’t reproduce the act of
opening a document.

 Page 64/ 324

18 subWhereAreWe

 Sub subtestsubWhereAreWe()

Dim vbplProject As VBIDE.VBProject
Dim vbclComponent As VBIDE.VBComponent
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbcplCodePane As VBIDE.CodePane
Dim slProjectNameName As String
Dim slModuleName As String
Dim slProcedureName As String
Dim lnglCurrentModuleLine As Long
Dim lnglModuleProcStartLine As Long
Dim lnglProcCountLines As Long
Dim lnglModuleProcEndLine As Long

subWhereAreWe _
 vbplProject, _
 vbclComponent, _
 vbcmlCodeModule, _
 vbcplCodePane, _
 slProjectNameName, _
 slModuleName, _
 slProcedureName, _
 lnglCurrentModuleLine, _
 lnglModuleProcStartLine, _
 lnglProcCountLines, _
 lnglModuleProcEndLine

Stop
' ***
End Sub
Sub subWhereAreWe(_
 vbppProject As VBIDE.VBProject, _
 vbcpComponent As VBIDE.VBComponent, _
 vbcmpCodeModule As VBIDE.CodeModule, _
 vbcppCodePane As VBIDE.CodePane, _
 spProjectNameName As String, _
 spModuleName As String, _

 Page 65/ 324

 spProcedureName As String, _
 lngpCurrentModuleLine As Long, _
 lngpModuleProcStartLine As Long, _
 lngpProcCountLines As Long, _
 lngpModuleProcEndLine As Long _
)
' Returns:
' Project Object
' Component Object
' Code Module Oject
' Codepane object
' Project name
' Module name
' Procedure name.
' Module line where the cursor is.
' Module Start Line of Procedure code.
' Number of Lines of code.
' Module End Line of Procedure code.
'
' The CodePane is where all of the real work is done.
'

Dim lnglSLine As Long
Dim lnglSCol As Long
Dim lnglELine As Long
Dim lnglECol As Long

Set vbppProject = Application.VBE.ActiveVBProject
spProjectNameName = vbppProject.Name

Set vbcppCodePane = Application.VBE.ActiveCodePane

Set vbcmpCodeModule = vbcppCodePane.CodeModule
spModuleName = vbcmpCodeModule.Name
spModuleName = vbcppCodePane.CodeModule.Parent.Name

Set vbcpComponent = vbppProject.VBComponents(spModuleName)

vbcppCodePane.GetSelection lngpCurrentModuleLine, lnglSCol, lnglELine, lnglECol

 Page 66/ 324

spProcedureName = vbcppCodePane.CodeModule.ProcOfLine(lngpCurrentModuleLine,
vbext_pk_Proc)

lngpModuleProcStartLine = vbcmpCodeModule.ProcBodyLine(spProcedureName,
vbext_pk_Proc)
lngpProcCountLines = vbcppCodePane.CodeModule.ProcCountLines(spProcedureName,
vbext_pk_Proc)

lngpCurrentModuleLine = lngpCurrentModuleLine

lngpModuleProcEndLine = lngpModuleProcStartLine + lngpProcCountLines - 1

' ***
End Sub

It may look like we’ve used a few more calls. But we haven’t. What we’ve done here is set objects to the
various parts of a VBA project. Previously we used the whole expanded call. Here we’ve set objects and
used the methods and properties of that object.

19 Setting variables to VBE objects

Set an object to the Active project
Set vbppProject = Application.VBE.ActiveVBProject

Set an object to the active code pane.
Set vbcppCodePane = Application.VBE.ActiveCodePane

Set an object to the current code module .
Set vbcmpCodeModule = vbcppCodePane.CodeModule

Set an object to the current component.
Set vbcpComponent = vbppProject.VBComponents(spModuleName)

Aaaaand you’ll see that we update the parameters directly by allowing the default ByRef instead of

specifying ByVal. Important point!

 Page 67/ 324

You will have seen by now that VBE code doesn’t seem to like procedures very much. The calls we’ve

used so far, all use MODULE line numbers. So, if we want to find if a procedure exists or look at the code
in a procedure how do we do it? More on that later.

 Page 68/ 324

Procedures to Classes

Oh Sorry. We were talking about subWhereAreWe. Let’s get back to that. We’ve written our sub so let’s

build a class.

A little about classes.

Many people never use classes, find no need to, and stick to procedures and so on. No worries! It is
however, another string to your bow and even if you never use them, you should have at least a rough

understanding of how they work. With this in mind BUT, remembering that this is supposed to be about

the VBE, we’re going to turn subWhereAreWe into a class in the simplest way possible.

Class Advantages.

Classes are simple to use. Declare it and it runs through the initialization routine and sets thing up. You
can then set or get values for that class.

Class Disadvantages.

They’re not that simple to set up and they need setting up properly. Just calling a Public subroutine or
function is often much simpler.

For VBA at least, classes are by definition single entities. They are embedded in the code. If you write a
text manipulation procedure that you need and put it into a class, say to strip all non-printable characters,
and then decide to make it more publicly available, the number of instances of the same code is likely to
multiply making it more difficult to maintain. Some other languages, though not all, bring the class code
in from libraries so they always get the latest version. I have to say though, that it’s the same for non class

code. In all too many cases, propagating a change in code everywhere is a problem. IMHO this is one of
the biggest problems in VBA.

Simple class layout

The simplest layout for a class in VBA is…

20 Simple Class layout

Private Module level variables in Declarations
These can be…
Private variablename [as…]
Or
Dim variablename [as…]
Both are "Private"

Private Sub Class_Initialize()
Code….

 Page 69/ 324

Module level variables = Local Variables
End sub

Get / Let subs that assign the module level variables to the class values and allow the values to
be set and retrieved.

21 Simple cNameExample Class code

All this does is print out "Mike&Lisa" in the immediate window. Note that the two parts should be put
into a new class module and an ordinary code module. We’ve talked about changing the module name
already. A small “c” at the front of the name in my scheme means er, class. cWhereAreWe is the class

containing code for WhereAreWe. Unlike the name of a standard module, the name of the class is very
important because that’s how you reference it from a standard module.

In a new Class Module. Call it cNameExample.

Option Explicit

'Module level Private variables.
Dim smName As String

Private Sub Class_Initialize()
' Local Variables
Dim slName As String

' Work with the locals

slName = "Mike&Lisa"
' Set the module level variables to the locals
smName = slName
'

End Sub

'Get / Let subs that assign the module level variables to the class.
Public Property Get Name() As String
Name = smName
'

End Property

 Page 70/ 324

22 Using the cNameExample example class

In a standard code module.

 Option Explicit

Sub subtestcNameExample

Dim clNameExample as cNameExample

Set clNameExample = New cNameExample
Debug.Print clNameExample.Name

'

End Sub

The more experienced will notice that this uses late binding. This will be the case throughout this
document. I don’t enter into a discussion of early v late binding.

Note that we use the name of the class module in the standard module. I’ve highlighted that.

 Page 71/ 324

Building a class from a Sub

Right then! Let’s get back to subWhereAreWe and building a class from that.

We’re going to change the code of the sub. You may call that cheating but there’s a good reason for it.
And anyway, it’s our book and I’m going to do it.

In the original sub, I minimize the amount of local variables by using the parameters directly in the code.
Being ByRef by default, the parameters were updated and we could harvest the results. I’m going to alter
that so local variables are used, and then the parameters are set up at the bottom.

Here’s the new code. It’s essentially the same but doing it this way will make life easier as you’ll see.

Again, the changes are:

• Defined a local variable for each item we want

• Set those local variables to the items we want instead or setting the parameters

• Set the parameters to the local variables all in one go at the bottom of the sub

23 subWhereAreWe recoded to convert to a Class

Sub subWhereAreWe(_
 vbppProject As VBIDE.VBProject, _
 vbcpComponent As VBIDE.VBComponent, _
 vbcmpCodeModule As VBIDE.CodeModule, _
 vbcppCodePane As VBIDE.CodePane, _
 spProjectNameName As String, _
 spModuleName As String, _
 spProcedureName As String, _
 lngpCurrentModuleLine As Long, _
 lngpModuleProcStartLine As Long, _
 lngpProcCountLines As Long, _
 lngpModuleProcEndLine As Long _
)
' Returns:
' Project Object
' Component Object
' Code Module Oject
' Codepane object
' Project name
' Module name

 Page 72/ 324

' Procedure name.
' Module line where the cursor is.
' Module Start Line of Procedure code.
' Number of Lines of code.
' Module End Line of Procedure code.
'
' The CodePane is where all of the real work is done.
'

Dim lnglSLine As Long
Dim lnglSCol As Long
Dim lnglELine As Long
Dim lnglECol As Long
Dim vbplProject As VBIDE.VBProject
Dim vbclComponent As VBIDE.VBComponent
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbcplCodePane As VBIDE.CodePane
Dim slProjectNameName As String
Dim slModuleName As String
Dim slProcedureName As String
Dim lnglCurrentModuleLine As Long
Dim lnglModuleProcStartLine As Long
Dim lnglProcCountLines As Long
Dim lnglModuleProcEndLine As Long

Set vbplProject = Application.VBE.ActiveVBProject
slProjectNameName = vbplProject.Name

Set vbcplCodePane = Application.VBE.ActiveCodePane

Set vbcmlCodeModule = vbcplCodePane.CodeModule
slModuleName = vbcmlCodeModule.Name
slModuleName = vbcplCodePane.CodeModule.Parent.Name

Set vbclComponent = vbplProject.VBComponents(spModuleName)

vbcplCodePane.GetSelection lnglCurrentModuleLine, lnglSCol, lnglELine, lnglECol

 Page 73/ 324

slProcedureName = vbcplCodePane.CodeModule.ProcOfLine(lnglCurrentModuleLine,
vbext_pk_Proc)

lnglModuleProcStartLine = vbcmlCodeModule.ProcBodyLine(slProcedureName,
vbext_pk_Proc)
lnglProcCountLines = vbcplCodePane.CodeModule.ProcCountLines(slProcedureName,
vbext_pk_Proc)

lnglCurrentModuleLine = lnglCurrentModuleLine

lnglModuleProcEndLine = lnglModuleProcStartLine + lnglProcCountLines - 1

vbppProject = vbplProject
vbcpComponent = vbclComponent
vbcmpCodeModule = vbcmlCodeModule
vbcppCodePane = vbcplCodePane
spProjectNameName = slProjectNameName
spModuleName = slModuleName
spProcedureName = slProcedureName
lngpCurrentModuleLine = lnglCurrentModuleLine
lngpModuleProcStartLine = lnglModuleProcStartLine
lngpProcCountLines = lnglProcCountLines
lngpModuleProcEndLine = lnglModuleProcEndLine

' ***
End Sub

We can test this using the same subtestsubWhereAreWe that we used before. It should report exactly
the same. It’s just that the parameters are all set up together at the end. To belabor a point, notice that
the “scope” part of the variable names, the letter immediately before the first capitol of the name, are l
for local and p for parameter and m for private module level variables.

So! With the naming scheme as it stands, s=String, lng/l=Long, i=Integer, o=Object and so on, we can see
that all those Dims as l=locals or p=parameters or m=Module level variables get a leeeeetle easier to
manipulate.

If the biz code is all LOCAL variables though rather than directly using the sub PARAMETERS, then that

code will be DIRECTLY copyable to a CLASS. Maintaining the code in the sub and class then becomes
almost trivial. Just copy the code from one to the other and adjust any Dims and module level variable
names!

 Page 74/ 324

Even though using a naming doodad simplifies altering code significantly, it’s still a pain in the bottom
to change all those pees to els an els to ems. And then insert all of those little property routines as well!

HAH! Why not do it with code!

The code below makes use of code we’ve already written and just altered. subWhereAreWe! It will look
at code from a sub and add code to make it a class.

Long piece of code warning!

I’m going to do a small walkthrough because there’s a couple of points worth ummm, pointing out.

24 subInsertGetProperties

 Sub subInsertGetProperties()

 ' Insert properties at the end of the
' module for all Dims in a procedure.
'
' This reflects my own personal preferences
' but it is possible to alter the code
' to anything you want!
'
' Insert a Dim at the top of the module
' to reflect the built procedure variable.
'
' Insert a line in the procedure to
' set the prperty to the variable in the
' property.
'
' ### Assumes variables defined as:
' <type><single letter "scope" l/p/m/g><Name beginning with a capitol>
'
' ### Assumes Dims are all together and one to a line.

There are a lot of Dims here. Do not be afraid of inserting as many Dims as you need. Some of this is
down to modern computers having more memory. Whatever.

Dim slLDimsArray() As String
Dim slMDimsArray() As String
Dim slNamesArray() As String
Dim slTypesArray() As String
Dim slSetArray() As String
Dim slVar As String

 Page 75/ 324

Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbplProject As VBIDE.VBProject
Dim vbclComponent As VBIDE.VBComponent
Dim vbcplCodePane As VBIDE.CodePane
Dim slProjectNameName As String
Dim slModuleName As String
Dim slProcedureName As String
Dim lnglCurrentModuleLine As Long
Dim lnglModuleProcStartLine As Long
Dim lnglProcCountLines As Long
Dim lnglModuleProcEndLine As Long
Dim lnglCurrentLine As Long
Dim slLine As String
Dim lnglSanityCheck As Long
Dim lnglNumOfDims As Long
Dim slDimLine As String
Dim slLineArray() As String
Dim slType As String
Dim lnglLenVar As Long
Dim lnglChrPos As Long
Dim slChr As String
Dim lnglChrCode As Long
Dim slScope As String
Dim slName As String
Dim slMName As String
Dim lnglCountOfModuleLines As Long
Dim lnglAsPos As Long
Dim slInsertPropertyCode As String
Dim slInsertMDimMCode As String
Dim slInsertMToLCode As String
Dim slTypePrefix As String
Dim slLName As String
Dim lnglModuleProcBodyLine As Long
Dim slSet As String

YAY! Call to the sub we’ve just built!
subWhereAreWe _
 vbplProject, _
 vbclComponent, _

 Page 76/ 324

 vbcmlCodeModule, _
 vbcplCodePane, _
 slProjectNameName, _
 slModuleName, _
 slProcedureName, _
 lnglCurrentModuleLine, _
 lnglModuleProcStartLine, _
 lnglModuleProcBodyLine, _
 lnglProcCountLines, _
 lnglModuleProcEndLine

' Find first Dim.
' Loop through Dims.
' Find the Capitol and create a variable with m as scope and
' one with no prefix at all.
' Go to bottom of Module.
' Insert Property code.
' Go to top of Module.
' Insert module level Dims.
'

Hmmmm… Been here before. Maybe move this to WhereAreWe.

' Find Dim Line.
lnglCurrentLine = lnglModuleProcStartLine

Do
 slLine = Trim$(vbcmlCodeModule.Lines(lnglCurrentLine, 1))

 If Left$(slLine, 4) = "Dim " Then
 Exit Do
 ElseIf Left$(slLine, 6) = "Const " Then
 Exit Do
 ElseIf Left$(slLine, 7) = "Static " Then
 Exit Do
 End If
 lnglCurrentLine = lnglCurrentLine + 1
 lnglSanityCheck = lnglSanityCheck + 1

 If lnglCurrentLine >= lnglModuleProcEndLine Then

 Page 77/ 324

 ' End of module.
 subMsgBox "@End of module." & vbNewLine & "@No Dims."
 Exit Sub

 End If

 If lnglSanityCheck > 200 Then

 ' Assume no Dims.
 subMsgBox "@No Dims."
 Exit Sub

 End If

Loop

Loop through all the proc code lines. If it’s not a Dim Get out.

lnglNumOfDims = 0
Do

 ' Move to next dim line
 slDimLine = Trim$(vbcmlCodeModule.Lines(lnglCurrentLine, 1))

 slLineArray = Split(slDimLine, " ")

 ' Get out if at the end of Dims
 If Len(slDimLine) = 0 Then
 Exit Do
 End If

 slType = ""
 Select Case slLineArray(0)

Got a Dim/Const/Static.
LOTS of possible line formats here to cope with. Not the least is code with continuation characters!
This is the simple hard coded form for a few items’ version.
This is crying out for building a function!

 Case "Dim", "Const", "Static"

 Page 78/ 324

 ' Variable will be in the 2nd element.
 slVar = slLineArray(1)
 lnglLenVar = Len(slVar)

 ' Find the first capitol letter.
 ' A=65 Z=90 [\]^_` a=97 z=122
 lnglChrPos = 1
 Do
 slChr = Mid$(slVar, lnglChrPos, 1)
 lnglChrCode = Asc(slChr)

 If lnglChrCode < 91 _
 And lnglChrCode > 64 Then
 Exit Do
 End If

 lnglChrPos = lnglChrPos + 1
 If lnglChrPos > lnglLenVar Then

The variable is probably all lower case.
 lnglChrPos = 0
 Exit Do
 End If

 Loop

 lnglAsPos = InStr(slDimLine, "As")
 slType = Mid$(slDimLine, lnglAsPos)

 If lnglChrPos < 2 Then

Another function opportunity!
 ' Probably no naming convention so add/impose one.
 slVar = StrConv(slVar, vbProperCase)
 slVar = "l" & slVar

 Select Case Mid$(slType, 4)
 Case "String"
 slVar = "s" & slVar

 Page 79/ 324

 lnglChrPos = 3
 Case "Long"
 slVar = "lng" & slVar
 lnglChrPos = 5
 Case "Boolean"
 slVar = "bln" & slVar
 lnglChrPos = 5
 Case "Object"
 slVar = "o" & slVar
 lnglChrPos = 3
 Case "VBIDE.CodeModule"
 slVar = "vbcm" & slVar
 lnglChrPos = 6
 Case "VBIDE.VBProject"
 slVar = "vbp" & slVar
 lnglChrPos = 5
 Case "VBIDE.VBComponent"
 slVar = "vbc" & slVar
 lnglChrPos = 5
 Case "VBIDE.CodePane"
 slVar = "vbcp" & slVar
 lnglChrPos = 6
 Case Else

 ' Variant.
 slVar = "v" & slVar
 lnglChrPos = 3

 End Select

 Else
 slScope = Mid$(slVar, lnglChrPos - 1, 1)
 End If

 ' Need to set slSet.
 Select Case Mid$(slType, 4)
 Case "String"
 lnglChrPos = 3
 slSet = ""

 Page 80/ 324

 Case "Long"
 lnglChrPos = 5
 slSet = ""
 Case "Boolean"
 lnglChrPos = 5
 slSet = ""
 Case "Object"
 lnglChrPos = 3
 slSet = "Set "
 Case "VBIDE.CodeModule"
 lnglChrPos = 6
 slSet = "Set "
 Case "VBIDE.VBProject"
 lnglChrPos = 5
 slSet = "Set "
 Case "VBIDE.VBComponent"
 lnglChrPos = 5
 slSet = "Set "
 Case "VBIDE.CodePane"
 lnglChrPos = 6
 slSet = "Set "
 Case "Variant"
 lnglChrPos = 3
 slSet = ""
 End Select

 slTypePrefix = Mid$(slVar, 1, lnglChrPos - 2)
 slName = Mid$(slVar, lnglChrPos)
 slName = Replace(slName, "()", "")
 slMName = slTypePrefix & "m" & slName
 slLName = slVar

"Redim Preserve" preserves the contents of the array while adding a new element. However, in
VBA, it only works to change the size of the LAST element of an array. We avoid that by using
different but coordinated SINGLE ELEMENT arrays of the different items. Also, it’s not very good
form or practice to loop ReDim Preserve in code. Better is to count the occurences and ReDim to
the total. Even though this does two "passes" it’s usually faster then Redim Preserving all the time
which has quite an overhead. We do this here because we aren’t expecting all that many Dims to
process.

 ReDim Preserve slMDimsArray(lnglNumOfDims)

 Page 81/ 324

 ReDim Preserve slNamesArray(lnglNumOfDims)
 ReDim Preserve slTypesArray(lnglNumOfDims)
 ReDim Preserve slLDimsArray(lnglNumOfDims)
 ReDim Preserve slSetArray(lnglNumOfDims)

We need to be clear here about the items we need to build the code we want.

 slMDimsArray(lnglNumOfDims) = slMName
 slNamesArray(lnglNumOfDims) = slName
 slTypesArray(lnglNumOfDims) = slType
 slLDimsArray(lnglNumOfDims) = slLName
 slSetArray(lnglNumOfDims) = slSet

 lnglNumOfDims = lnglNumOfDims + 1

 Case Else

 ' Get out if at the end of Dims
 Exit Do

 End Select

 lnglCurrentLine = lnglCurrentLine + 1

Loop

' ---
' Create and insert Code.

For lnglNumOfDims = LBound(slMDimsArray) To UBound(slMDimsArray)

We build single strings of code. Each VBE line is "separated" by a vbCrLf.
Microsoft says that vbNewLine is slightly faster though. If you breakpoint the code here and look at the
lines in the immediate window you should see that the code is built correctly. This means that we only
insert ONE line at the insertion line number, but in reality, it is multiple lines.
All the code lines are built in this single loop here. It is possible and some may prefer, to go through three
times and build the code for the separate insertion points one at a time, or even build code insert it, build
code insert it, and so on. I’ve included examples of the code we want to build in the comments.
REMEMBER REMEMBER, even though you set a breakpoint, VBA may refuse to let you do it here!

 ' Public Property Get Name() As String
 ' Name = smName

 Page 82/ 324

 ' ' ***
 ' End Property

 slInsertPropertyCode = slInsertPropertyCode _
 & "Public Property Get "
 slInsertPropertyCode = slInsertPropertyCode _
 & slNamesArray(lnglNumOfDims) & "()" _
 & " " _
 & slTypesArray(lnglNumOfDims)
 slInsertPropertyCode = slInsertPropertyCode & vbCrLf
 slInsertPropertyCode = slInsertPropertyCode _
 & slSetArray(lnglNumOfDims) _
 & slNamesArray(lnglNumOfDims) _
 & " = " _
 & slMDimsArray(lnglNumOfDims)
 slInsertPropertyCode = slInsertPropertyCode & vbCrLf
 slInsertPropertyCode = slInsertPropertyCode & "' " & String(69, "*")
 slInsertPropertyCode = slInsertPropertyCode & vbCrLf
 slInsertPropertyCode = slInsertPropertyCode _
 & "End Property"
 slInsertPropertyCode = slInsertPropertyCode & vbCrLf

 ' ---
 ' <prefix>m<Name> = <prefix>l<Name>
 slInsertMToLCode = slInsertMToLCode _
 & slSetArray(lnglNumOfDims) _
 & slMDimsArray(lnglNumOfDims) _
 & " = " _
 & slLDimsArray(lnglNumOfDims)
 slInsertMToLCode = slInsertMToLCode & vbCrLf

 ' ---
 ' <prefix>m<Var root> = Old Variable
 slInsertMDimMCode = slInsertMDimMCode _
 & "Dim " _
 & slMDimsArray(lnglNumOfDims) & " " _
 & slTypesArray(lnglNumOfDims)
 slInsertMDimMCode = slInsertMDimMCode & vbCrLf

 Page 83/ 324

Next lnglNumOfDims

Finished building the code and now we have to put it somewhere.

Note that we go BACKWARDS up the procedure module code. This is VERY important so that the module
line numbers stay the same!

vbcmlCodeModule.InsertLines _
 Line:=vbcmlCodeModule.CountOfLines + 1, _
 String:=slInsertPropertyCode

vbcmlCodeModule.InsertLines _
 Line:=lnglModuleProcEndLine - 1, _
 String:=slInsertMToLCode

vbcmlCodeModule.InsertLines _
 Line:=vbcmlCodeModule.CountOfDeclarationLines + 1, _
 String:=slInsertMDimMCode

' ***
End Sub

Let’s use it!

This process is exactly the same as our cNameExample.

• Add a new CLASS module.

This is NOT the same as a normal module so vbext_pk_Proc is different and needs to be collected
from the ProcOfLine call to be used further on.

• Rename it to cWhereAreWe.

• Add a sub Private Sub Class_Initialize()
o Click the pulldown in the General box
o Select Class

 Page 84/ 324

You’ll get…

• Copy the CODE from subWhereAreWe to that new sub, Class_Initialize. Just the code from the
next line after Sub subWhereAreWe to the line above where the parameters are set because
we’re going to set the module level variables instead. Remember that lines with the continuation
character between them are ONE line.

• Open the Macros menu.

• Run the sub you’ve just built… subInsertGetProperties

• Have a gander at what you’ve just created. It’s a class and should run just fine.

Here’s code to test it.

25 subtestcWhereAreWe

Sub subtestcWhereAreWe()

Dim clWhereAreWe As cWhereAreWe

Set clWhereAreWe = New cWhereAreWe

Debug.Print clWhereAreWe.ModuleName
Debug.Print clWhereAreWe.CurrentModuleLine

 Page 85/ 324

'

End Sub

Now we have a class and a sub that do the same thing. Let’s look at it a bit more closely. Let’s look at the
sub. It only reports so it’s okay to run against itself.

You should have a module that just has the test code and the sub in it. This is purely so that it’s easy to
track and trace. You’ll be running code just from one module.

Tell you what, let’s add some lines above a sub definition.

Cut and paste subtestsubWhereAreWe and subWhereAreWe into a new module. Add some lines
between the procedures.

26 subtestsubWhereAreWe

Sub subtestsubWhereAreWe()
Code
Stop
'

End Sub

Sub subWhereAreWe(_
Code
'

End Sub

Put the cursor in subWhereAreWe and run subtestsubWhereAreWe from the Macros menu.
Now check the module line numbers.
Some of them are wrong.

 Page 86/ 324

This is because we’re using the wrong start of procedure line number. The procedure actually starts on
the line after the end of the last procedure. The line number we are using is the one where the procedure
is defined. Let’s correct that. Here’s the new code complete with line numbers for the module.

27 subWhereAreWe corrected for line numbers

1 Option Explicit

2

3 Sub subtestsubWhereAreWe()

4

5 Dim vbplProject As VBIDE.VBProject

6 Dim vbclComponent As VBIDE.VBComponent

7 Dim vbcmlCodeModule As VBIDE.CodeModule

8 Dim vbcplCodePane As VBIDE.CodePane

9 Dim slProjectNameName As String

10 Dim slModuleName As String

11 Dim slProcedureName As String

12 Dim lnglCurrentModuleLine As Long

13 Dim lnglModuleProcStartLine As Long

Added the line below.

14 Dim lnglModuleProcBodyLine As Long

15 Dim lnglProcCountLines As Long

16 Dim lnglModuleProcEndLine As Long

17

18 subWhereAreWe _

19 vbplProject, _

20 vbclComponent, _

21 vbcmlCodeModule, _

22 vbcplCodePane, _

23 slProjectNameName, _

24 slModuleName, _

25 slProcedureName, _

26 lnglCurrentModuleLine, _

27 lnglModuleProcStartLine, _

Added the line below.

28 lnglModuleProcBodyLine, _

29 lnglProcCountLines, _

 Page 87/ 324

30 lnglModuleProcEndLine

31

32 Stop

33 ' ***

34 End Sub

35

36

37

38

39

40 Sub subWhereAreWe(_

41 vbppProject As VBIDE.VBProject, _

42 vbcpComponent As VBIDE.VBComponent, _

43 vbcmpCodeModule As VBIDE.CodeModule, _

44 vbcppCodePane As VBIDE.CodePane, _

45 spProjectNameName As String, _

46 spModuleName As String, _

47 spProcedureName As String, _

48 lngpCurrentModuleLine As Long, _

49 lngpModuleProcStartLine As Long, _

50 lngpModuleProcBodyLine As Long, _

51 lngpProcCountLines As Long, _

52 lngpModuleProcEndLine As Long _

53)

54 ' Returns:

55 ' Project Object

56 ' Component Object

57 ' Code Module Oject

58 ' Codepane object

59 ' Project name

60 ' Module name

61 ' Procedure name.

62 ' Module line where the cursor is.

63 ' Module Start Line of Procedure code.

64 ' Number of Lines of code.

65 ' Module End Line of Procedure code.

66 '

67 ' The CodePane is where all of the real work is done.

68 '

 Page 88/ 324

69

70 Dim lnglSLine As Long

71 Dim lnglSCol As Long

72 Dim lnglELine As Long

73 Dim lnglECol As Long

74 Dim vbplProject As VBIDE.VBProject

75 Dim vbclComponent As VBIDE.VBComponent

76 Dim vbcmlCodeModule As VBIDE.CodeModule

77 Dim vbcplCodePane As VBIDE.CodePane

78 Dim slProjectNameName As String

79 Dim slModuleName As String

80 Dim slProcedureName As String

81 Dim lnglCurrentModuleLine As Long

82 Dim lnglModuleProcStartLine As Long

Added the line below.

83 Dim lnglModuleProcBodyLine As Long

84 Dim lnglProcCountLines As Long

85 Dim lnglModuleProcEndLine As Long

86

87 Set vbplProject = Application.VBE.ActiveVBProject

88 slProjectNameName = vbplProject.Name

89

90 Set vbcplCodePane = Application.VBE.ActiveCodePane

91

92 Set vbcmlCodeModule = vbcplCodePane.CodeModule

93 slModuleName = vbcmlCodeModule.Name

94 slModuleName = vbcplCodePane.CodeModule.Parent.Name

95

96 Set vbclComponent = vbplProject.VBComponents(slModuleName)

97

98 vbcplCodePane.GetSelection lnglCurrentModuleLine, lnglSCol, lnglELine, lnglECol

99

100 slProcedureName = vbcmlCodeModule.ProcOfLine(lnglCurrentModuleLine, vbext_pk_Proc)

Changed this line.

101 lnglModuleProcStartLine = vbcmlCodeModule.ProcStartLine(slProcedureName,
vbext_pk_Proc)

Added this line.

 Page 89/ 324

102 lnglModuleProcBodyLine = vbcmlCodeModule.ProcBodyLine(slProcedureName,
vbext_pk_Proc)

103 lnglProcCountLines = vbcplCodePane.CodeModule.ProcCountLines(slProcedureName,
vbext_pk_Proc)

104

105 lnglCurrentModuleLine = lnglCurrentModuleLine

106

107 lnglModuleProcEndLine = lnglModuleProcStartLine + lnglProcCountLines - 1

108

109 Set vbppProject = vbplProject

110 Set vbcpComponent = vbclComponent

111 Set vbcmpCodeModule = vbcmlCodeModule

112 Set vbcppCodePane = vbcplCodePane

113 spProjectNameName = slProjectNameName

114 spModuleName = slModuleName

115 spProcedureName = slProcedureName

116 lngpCurrentModuleLine = lnglCurrentModuleLine

117 lngpModuleProcStartLine = lnglModuleProcStartLine

Added the line below.

118 lngpModuleProcBodyLine = lnglModuleProcBodyLine

119 lngpProcCountLines = lnglProcCountLines

120 lngpModuleProcEndLine = lnglModuleProcEndLine

121

122 ' ***

123 End Sub

124

We’ve altered the sub and can delete and rebuild the class as well or just change the same lines.

Now the line numbers are reported correctly!

 Page 90/ 324

Aside: I write the parameters of my procedures like this:

28 My Procedure parameters layout

Sub/Function subMike/fncMike(_
 Parameter1 as String, _
 Parameter2 as String, _
 Parameter3 as Long _
) _
 As String

Very simply, for me, it makes counting, adding, deleting, and just reading parameters easier. Did I mention

how lazy I am? And while I’m here, depending on the NAME of the procedure, comments at the top of a
sub/function ater the heading line, are a great bonus! They may not say much. It may be just the name
of the sub separated out. But, we can then print/list subs and functions in a report! We’ll do that later
too.

Now then… where were we? Oh yes. Splitting up a Dim line to separate Dims.

 Page 91/ 324

Code to Split Dims up

We talked about this some time ago. As we said, this is all about assigning a type to a variable and guess
what, a naming convention can help.

Also, some time ago we wrote a function for trying to guess a variable type, fncGuessVarType.

We’ve moved on quite a bit since then, and it’s left to the reader to possibly include some of the code
from subInsertGetProperties in fncGuessVarType. It’s even possible though we don’t do it here, to look
for

variable = <number>

in the code or

variable = "

and assign String or Long respectively.

The code in the excel add-in looks at the name and checks for "Num", "Number", "Count", "Array",
"Name" and so on in the variable name itself for example, and tries to guess the variable type. A variable
beginning with sl and with "Array" at the end is assigned

Dim slNameArray() As String

"i" for example is renamed to lnglI, and "j" to lnglJ. I hate single letter variables!

Anyways. We’re going to use fncGuessVarType and cWhereAreWe here.

A side effect of this particular procedure is that all the Dims are moved together to the top of the code,
well, to the first line we find a Dim on anyway. We’ve had to do that a few times now, find the first Dim
line in a procedure. We can put that into cWhereAreWe! While we’re at it, we’ve been working with the
actual code up till now, deleting adding and replacing lines. Working with the code in an array would be
a bit trickier but much much faster. We could add that to cWhereAreWe as well.

We’ll get to that.

Back to splitting up. Remember way back when we sorted Dims, we wrote another procedure to sort a
selection of Dims? It’s possible to use the same technique to split up a selection of Dims but I leave that
to the reader to figure out.

Here’s the code to split up all of the Dims from a single line.

 Page 92/ 324

29 subccSplitAllDims

Sub subccSplitAllDims()
' NO REPORT.
' NO END MESSAGE.
'
' This will go through the whole code of a procedure and
' split any Dims seperated by commas
' to seperate lines. They are then all placed
' where the first Dim was found.
'
'

Dim lnglNumLines As Long
Dim slInsertLines As String
Dim lnglFirstDimLine As Long
Dim lnglStopLines As Long
Dim llModuleEndLine As Long
Dim llModuleLine As Long
Dim lnglM As Long
Dim lnglN As Long
Dim lnglNewUBound As Long
Dim lnglOldUBound As Long
Dim lnglReplaceUBound As Long
Dim lnglEndLine As Long
Dim lnglStartLine As Long
Dim lnglStartContinuationLInes As Long
Dim lnglContinuationLInesCount As Long
Dim slLine As String
Dim slNewDimsArray() As String
Dim slReplaceDims() As String
Dim slReplaceLines As String
Dim slComment As String
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim lnglLinesToDelete() As Long
Dim clWhereAreWe As cWhereAreWe

 Page 93/ 324

Dim lnglModuleSartLine As Long
Dim lnglModuleEndLine As Long
Dim lnglModuleLine As Long
Dim lnglNumberOfReplaceDims As Long
Dim lngErrNumber As Long

Set clWhereAreWe = New cWhereAreWe

lnglModuleLine = clWhereAreWe.ModuleProcBodyLine
lnglModuleEndLine = clWhereAreWe.ModuleProcEndLine
Set vbcmlCodeModule = clWhereAreWe.CodeModule

' ---
' Go through ALL of the code.
lnglFirstDimLine = 0
Do
 Do
 lnglModuleLine = lnglModuleLine + 1
 If lnglModuleLine >= lnglModuleEndLine Then
 Exit Do
 End If

 ' Experience tells me it's very possible to have
 ' multiple lines here connected with the continuation chr.
 slLine = ""
 lnglStartContinuationLInes = 0
 lnglContinuationLInesCount = 1
 Do
 slLine = slLine & Trim$(vbcmlCodeModule.Lines(lnglModuleLine, 1))

 If lnglStartContinuationLInes = 0 Then
 lnglStartContinuationLInes = lnglModuleLine
 End If

 If Right$(slLine, 1) <> "_" Then
 Exit Do
 End If
 lnglContinuationLInesCount = lnglContinuationLInesCount + 1
 lnglModuleLine = lnglModuleLine + 1

 Page 94/ 324

 Loop
 slLine = Replace(slLine, "_", "")

 ' Skip comments.
 If Left$(Trim$(slLine), 1) = "'" Then
 Exit Do
 End If

 ' Skip space lines.
 If Len(Trim$(slLine)) = 0 Then
 Exit Do
 End If

 ' We do NOT get rid of spaces as we want to know if there's
 ' an As clause.

 ' Dim?
 If Left$(slLine, 4) = "Dim " _
 Or _
 Left$(slLine, 6) = "Const " _
 Or _
 Left$(slLine, 7) = "Static " _
 Then

 If lnglFirstDimLine = 0 Then
 lnglFirstDimLine = lnglStartContinuationLInes
 End If

 slNewDimsArray = fncSplitDimLine(slLine)
 lnglNewUBound = UBound(slNewDimsArray)

 ' We may not have initialised this array yet.
 On Error Resume Next
 lnglOldUBound = UBound(slReplaceDims)
 lngErrNumber = Err.Number
 On Error GoTo 0

 If lngErrNumber <> 0 Then

 Page 95/ 324

 lnglReplaceUBound = -1

 End If

 lnglReplaceUBound = lnglOldUBound + lnglNewUBound + 1
 ReDim Preserve slReplaceDims(lnglReplaceUBound)
 For lnglM = 0 To lnglNewUBound
 slReplaceDims(lnglOldUBound + lnglM + 1) _
 = slNewDimsArray(lnglM)
 Next lnglM

 Else
 Exit Do
 End If

 ' Delete the old line.
 vbcmlCodeModule.DeleteLines _
 StartLine:=lnglModuleLine - lnglContinuationLInesCount + 1, _
 count:=lnglContinuationLInesCount

 ' Decrement the line counters because of deletion.
 lnglModuleLine = lnglModuleLine - lnglContinuationLInesCount
 lnglModuleEndLine = lnglModuleEndLine - lnglContinuationLInesCount

 Exit Do
 Loop

 If lnglModuleLine >= lnglModuleEndLine Then
 Exit Do
 End If

Loop

' Insert the New set of Dims where we found the first one.
slReplaceLines = Join(slReplaceDims, vbCrLf)
vbcmlCodeModule.InsertLines _
 Line:=lnglFirstDimLine, _
 String:=slReplaceLines

 Page 96/ 324

Set vbcmlCodeModule = Nothing

'

End Sub

You’ll notice we used our CLASS to get information about where the cursor is rather than the SUB.

This will be the case for the rest of the procedures here. No more subWhereAreWe!

One of the reasons for this is that we will be adding to the WhereAreWe process, and we don’t want to

keep altering TWO sets of code. If you want to maintain the sub, I suggest you wait till the end before
doing so and make all the changes in one go by copying the body of the code back and altering any
parameters. Structured the way we have laid out, that should be all it should take.

 Page 97/ 324

Debug Print variables

While working on that last piece of code I needed to know the value of a few variables. I actually added
watches for them but that’s not always possible because altering the code while looking at it in the VBE
sometimes gives the message…

7 Can't enter break mode

In that case we will want to Debug.Print the variable.

Setting up Debug.Print is simple. You may want to print the variable value before and after a line. What
if you want to print a number of variables or indication of the processing path? Simple… you add some
text to the Debug.Print to show where you are. After doing all this you may want to delete them all
afterwards. Actually, I’m sure you’ll want to delete them.

There are lots of simple steps to do. We can pick up a variable by selecting it and using GetSelection. We
can insert Lines and we can delete lines.

We’ve done all of that.

Great!

The hardest part here is working out what to print and how to set that up! The below code just prints a
line number, the selected variable, and a comment if you enter one, but we can have it print anything we
want really.

 Page 98/ 324

30 subInsertSelectionDebug

Sub subccInsertSelectionDebug()
' SELECTION.
' NO REPORT.
' NO END MESSAGE.
'
' Insert the selection as a debug line.
' This will mostly be used to debug.print a
' variable.
'

Dim clWhereAreWe As cWhereAreWe
Dim lnglModuleEndLine As Long
Dim lnglModuleLine As Long
Dim slCurrentLine As String
Dim slDQ As String
Dim slPrintText As String
Dim slSelection As String
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim lnglSLine As Long
Dim lnglSCol As Long
Dim lnglELine As Long
Dim lnglECol As Long
Dim slPrintBefore As String
Dim slPrintAfter As String

Set clWhereAreWe = New cWhereAreWe

lnglModuleLine = clWhereAreWe.ModuleProcBodyLine
lnglModuleEndLine = clWhereAreWe.ModuleProcEndLine
slSelection = clWhereAreWe.Selection
lnglSLine = clWhereAreWe.CurrentModuleLine
lnglSCol = clWhereAreWe.SCol
lnglELine = clWhereAreWe.ELine
lnglECol = clWhereAreWe.ECol
slCurrentLine = clWhereAreWe.CurrentLine

 Page 99/ 324

If lnglSLine <> lnglELine Then

 subMsgBox "@Sorry. I don't know what to do" _
 & vbCrLf & " because there is more than one line selected." _
 & vbCrLf & "Please select a variable to Debug.Print."
 Exit Sub

End If
If Len(slSelection) = 0 Then

 subMsgBox "@Sorry. You haven't selected a variable." _
 & vbCrLf & "Please select a variable to Debug.Print."
 Exit Sub

End If

Set vbcmlCodeModule = clWhereAreWe.CodeModule

slDQ = Chr(34)

slPrintText = InputBox("@Please enter Text to print", "Text for Debug.Print")

slPrintBefore = "Debug.Print " _
 & slDQ & slPrintText & slDQ _
 & " & " _
 & slDQ & " Before L# " & CStr(lnglSLine) _
 & " " & slSelection & " " _
 & ">" & slDQ & " & " _
 & slSelection & " & " _
 & slDQ & "< " & slDQ _
 & " ' Debug."

slPrintAfter = "Debug.Print " _
 & slDQ & slPrintText & slDQ _
 & " & " _
 & slDQ & " After L# " & CStr(lnglSLine) _
 & " " & slSelection & " " _
 & ">" & slDQ & " & " _
 & slSelection & " & " _

 Page 100/ 324

 & slDQ & "< " & slDQ _
 & " ' Debug."

' Print After?
vbcmlCodeModule.InsertLines lnglSLine + 1, slPrintAfter

' Print Before?
vbcmlCodeModule.InsertLines lnglSLine, slPrintBefore

'

End Sub

Here is a very simple procedure before and after using the above code and selecting "ss"

31 Sub before subInsertSelectionDebug

Sub subtestsubccInsertSelectionDebug()

Dim ss As String
Dim slLine As String

ss = "gg"

'

End Sub

32 Sub after insertSelectionDebug

Sub subtestsubccInsertSelectionDebug()

Dim ss As String
Dim slLine As String

Debug.Print "" & " Before L# 19 ss >" & ss & "< " ' Debug.
ss = "gg"
Debug.Print "" & " After L# 19 ss >" & ss & "< " ' Debug.

 Page 101/ 324

' **
End Sub

A caveat for using the code is that it doesn’t deal with expressions or continuation lines.

Here is our user form used for a number of options for a similar procedure. I hold the options in an INI
file as defaults. The code behind this form does deal with expressions and continuation lines.

 Page 102/ 324

8 Insert Debug Options

Changing anything here changes the item in the INI file so the options are persistent.

 Page 103/ 324

De debug

What do we do when our debugging is finished? We delete the Debug.Print lines of course!

Here’s code to do just that.

33 subccDeleteDebugPrint

Sub subccDeletDebugPrint()
' Delete Debug.Print Lines.
'

Dim clWhereAreWe As cWhereAreWe
Dim lnglModuleEndLine As Long
Dim lnglModuleBodyLine As Long
Dim slCurrentLine As String
Dim slDQ As String
Dim slPrintText As String
Dim slSelection As String
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim lnglSLine As Long
Dim lnglSCol As Long
Dim lnglELine As Long
Dim lnglECol As Long
Dim slPrintBefore As String
Dim slPrintAfter As String
Dim lnglCurrentLine As Long
Dim slLookFor As String
Dim lnglLenLookFor As Long
Dim slLine As String

Set clWhereAreWe = New cWhereAreWe

lnglModuleBodyLine = clWhereAreWe.ModuleProcBodyLine
lnglModuleEndLine = clWhereAreWe.ModuleProcEndLine
slSelection = clWhereAreWe.Selection
lnglSLine = clWhereAreWe.CurrentModuleLine
lnglSCol = clWhereAreWe.SCol
lnglELine = clWhereAreWe.ELine

 Page 104/ 324

lnglECol = clWhereAreWe.ECol
slCurrentLine = clWhereAreWe.CurrentLine

Set vbcmlCodeModule = clWhereAreWe.CodeModule

slLookFor = "Debug.Print"
lnglLenLookFor = Len(slLookFor)

' Go Back UP the code to preserve line numbers.
lnglCurrentLine = lnglModuleEndLine
Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCurrentLine, 1))

 If Len(slLine) >= lnglLenLookFor Then
 If InStr(slLine, slLookFor) > 0 Then

 vbcmlCodeModule.DeleteLines _
 StartLine:=lnglCurrentLine, _
 count:=1

 End If
 End If

 lnglCurrentLine = lnglCurrentLine - 1
 If lnglCurrentLine <= lnglModuleBodyLine Then
 Exit Do
 End If
Loop

' ---
End Sub

 Page 105/ 324

About that user form I mentioned for options. It is invoked by entering a question mark in an InputBox

instead of text for a comment. It will appear and stay in the VBE and NOT in the application thanks to
some wonderful code from Chip Pearson.

This code is to keep the userform in the VBE and not appear in the application. It’s Chips code, available

on his site. Put this in the FORM code of the form you are creating. When you load the form, it will stay
in the VBE.

34 Keep UserForm in the VBE

Option Explicit
Private Const C_USERFORM_CLASSNAME = "ThunderDFrame"

Private Declare Function SetParent Lib "user32" (_
 ByVal hWndChild As Long, _
 ByVal hWndNewParent As Long) As Long

Private Declare Function FindWindow Lib "user32" Alias "FindWindowA" (_
 ByVal lpClassName As String, _
 ByVal lpWindowName As String) As Long

Private Sub UserForm_Initialize()

subMakeParent

' ***
End Sub
Private Sub subMakeParent()
' Chip Pearson.

Dim Res As Long
Dim UserFormHWnd As Long
Dim VBEHwnd As Long

' Chip.
''''''''''''''''''''''''''''''
' Get the HWnd of the UserForm
''''''''''''''''''''''''''''''
UserFormHWnd = FindWindow(C_USERFORM_CLASSNAME, Me.Caption)

 Page 106/ 324

If UserFormHWnd > 0 Then
' ''''''''''''''''''''''''
' ' Get the ROOTOWNER HWnd
' ''''''''''''''''''''''''
' ' VBEHWnd = GetAncestor(UserFormHWnd, GA_ROOTOWNER)

 ' Next line is mine.
 VBEHwnd = Application.VBE.MainWindow.hwnd

 If VBEHwnd > 0 Then
 '''''''''''''''''''''''''''''''''
 ' Call SetParent to make the form
 ' a child of the application.
 '''''''''''''''''''''''''''''''''
 Res = SetParent(UserFormHWnd, VBEHwnd)
 If Res = 0 Then
 ''''''''''''''''''''
 ' An error occurred.
 ''''''''''''''''''''
 MsgBox "The call to SetParent failed."
 End If
 End If
End If

' ***
End Sub
Private Sub UserForm_Terminate()

Application.VBE.MainWindow.Visible = True
Application.VBE.MainWindow.SetFocus
DoEvents

' ***
End Sub

 Page 107/ 324

VBE programmers do it Immediately!

Getting back to printing to the immediate window. Trust me. You will want to run your procedure
multiple times. The window gets messy and sometime very confusing! Clearing the window manually
means going to the immediate window, doing a CtrlA to select everything and then pressing the delete
key. It’s sometimes convenient to be able to clear the immediate window programatically. There is an
easy way and a difficult way.

The following code emulates the manual method.

35 Clear immediate window with SendKeys

Sub subClearIW()

Application.VBE.Windows.Item("Immediate").SetFocus
Application.SendKeys "^a"
Application.SendKeys "{Del}"

'

End Sub

However, most people, including me, say that you can’t depend on SendKeys.

You are probably aware that if you print a lot to the immediate window then lines will scroll off after about
300. This can be important if you are printing a large array for example, or tracing through some code
repeatedly, or just tracing through a lot of code.

In that case maybe you should think about creating a procedure that writes to a log file. We actually do
exactly that later when coding a Compile Report.

But! It gets worse. SendKeys is only available in Excel! I’ve tried Word Powerpoint and Access so far…
No go!

So, we need to find another way.

There is some very simple code that works in 99% of cases. Okay, I just guessed the 99%, but I’m pretty
sure you won’t come across the other "1%" and I’m just doing CYA really.

To get back. If you do a lot of printing to the IW, then you will find your earlier results scrolling off to
neverland. As I mentioned, it will only print about 300 lines.

We can use that!

 Page 108/ 324

The following code will do it’s best to scroll everything in the IW outa sight!

36 Clear immediate window. Debug.Print 1

Sub subClearIW()

Debug.Print String(65535, vbCr)

' ***
End Sub

There are variations of this…

37 Clear immediate window. Debug.Print 2

Sub subClearIW()

 Dim lnglN As Long
For lnglN = 0 To 100
 Debug.Print ""
Next lnglN

' **
End Sub

But I think you get the idea.

There is more complex code out on the net, some better than others, to clear the immediate window.
Basically, all of them do the same as sendkeys, but via API calls. For completeness I present the more
complex code to clear the IW with API calls in the appendices.

 Page 109/ 324

Button up

So far, when running a piece of code, we’ve done this from the Macros menu. You may have noticed this
is the first time I’ve used the word "Macro". IMHO, it’s a terrible word. The code you write is in
procedures. The procedures may be Subs, Functions, or Properties and I often refer here to "subs" or
"functions" or "procs". I call a procedure a procedure!

Flame off!

Anyway, moving on. In Word and so on, in the VBE, it’s possible to assign a procedure to a button, or put
it in a menu option on a toolbar instead of using the "macros" (Boooohissss) menu.

That would be nice! Yea! I hear ya. But be careful. You may end up with a monster!

However, having said that…

The latter is accomplished in the VBE by referencing the Application.VBE.CommandBars collection.
Remember there is no ribbon here!

Before going any further, I would like to point out that this subject is dealt with VERY extensively on the
internet, most notably by someone I’ve mentioned a few times already, Chip Pearson. I’ve distilled the

following code from a number of sources all credited in the code. BUT! If you follow the links in the code

and look at it carefully, you’ll find that a LOT of the code originates with Mr Pearson. Note that there is
no skimping here. You really do need all of the code.

We’re going to build a toolbar with code. It’s just a toolbar and nothing to be scared of, but there is some
pretty tricky stuff here. When I first tried this, I was surprised that it didn’t work. Not properly anyways.
It would run once and that was it. Until I remembered. Remember Remember, tenet 1! The trick was to
put the code in its own project. It worked well then but got bogged down if anything went wrong. So,
heads up, this is not 100% stable in all situations and you should definitely put the code in a separate
project! The reason probably lies with the event handler resetting and losing its’ way. We’re going to do
it anyway.

You first need a new Project. Remember remember! One project per document so you have to create a
new document/spreadsheet/presentation/whatever to get a new Project. Back to the VBE and there it
is. Yay!

You’ll need a class module and a standard module. The code here is duplicated and mashed from Chip
Pearson at http://www.cpearson.com/excel/VbeMenus.aspx and from xld on the vbaexpress forum at
http://www.vbaexpress.com/forum/showthread.php?11748-add-an-item-to-a-vbe-toolbar.

Rename the class module to cBarEvents. The name itself isn’t important, but it’s all linked together in the
code so if you want a different name, you’ll have to alter it all over the place. The same goes for other
bits of code. My advice is to get it working first before you alter anything.

http://www.cpearson.com/excel/VbeMenus.aspx
http://www.vbaexpress.com/forum/showthread.php?11748-add-an-item-to-a-vbe-toolbar

 Page 110/ 324

Here’s the code for the class.

38 Button code for the CLASS module

Option Explicit

Public WithEvents oCBControlEvents As CommandBarEvents

Private Sub oCBControlEvents_Click(_
 ByVal cbCommandBarControl As Object, _
 Handled As Boolean, _
 CancelDefault As Boolean)
'http://www.vbaexpress.com/forum/showthread.php?11748-add-an-item-to-a-vbe-
toolbar

'On Error Resume Next

'Run the routine given by the commandbar control's OnAction property
Application.Run cbCommandBarControl.OnAction

Handled = True
CancelDefault = True

End Sub

Now in a standard module, and you can call that anything you like because it’s the code that’s important.

39 Button code in STANDARD module

Option Explicit

Dim mcolBarEvents As New Collection 'collection to store menu item click event
handlers

Sub subBrandNewBarAndButton()
Dim CBE As cBarEvents
Dim myBar As CommandBar
Dim myControl

On Error Resume Next

 Page 111/ 324

Application.VBE.CommandBars("Debug Extra").Delete
On Error GoTo 0

' ---
' ToolBar.

Set myBar = Application.VBE.CommandBars.Add("Debug Extra", , False, True)
myBar.Visible = True

' ---
' Button.

Set myControl = myBar.Controls.Add(msoControlButton, , , 1)
With myControl
 .Caption = "Debug Variable"
 .FaceId = 29
 .OnAction = "subccInsertSelectionDebug"
End With

'Create a new instance of our button event-handling class
Set CBE = New cBarEvents

'Tell the class to hook into the events for this button
Set CBE.oCBControlEvents = Application.VBE.Events.CommandBarEvents(myControl)

'And add the event handler to our collection of handlers
mcolBarEvents.Add CBE

' ---
' Button.

Set myControl = myBar.Controls.Add(msoControlButton, , , 1)
With myControl
 .Caption = "Clear Debug"
 .FaceId = 29
 .OnAction = "subccDeletDebugPrint"
End With

'Create a new instance of our button event-handling class

 Page 112/ 324

Set CBE = New cBarEvents

'Tell the class to hook into the events for this button
Set CBE.oCBControlEvents = Application.VBE.Events.CommandBarEvents(myControl)

'And add the event handler to our collection of handlers
mcolBarEvents.Add CBE

' ---
' Button.

Set myControl = myBar.Controls.Add(msoControlButton, , , 1)
With myControl
 .Caption = "Mark"
 .FaceId = 29
 .OnAction = "subBookMarkAndBreakpoint"
End With

'Create a new instance of our button event-handling class
Set CBE = New cBarEvents

'Tell the class to hook into the events for this button
Set CBE.oCBControlEvents = Application.VBE.Events.CommandBarEvents(myControl)

'And add the event handler to our collection of handlers
mcolBarEvents.Add CBE

' ---
' Button.

Set myControl = myBar.Controls.Add(msoControlButton, , , 1)
With myControl
 .Caption = "Clear IW"
 .FaceId = 29
 .OnAction = "subClearIW"
End With

'Create a new instance of our button event-handling class
Set CBE = New cBarEvents

 Page 113/ 324

'Tell the class to hook into the events for this button
Set CBE.oCBControlEvents = Application.VBE.Events.CommandBarEvents(myControl)

'And add the event handler to our collection of handlers
mcolBarEvents.Add CBE

'

End Sub

You’ll see that the OnAction Properties for each button has a sub mentioned. These are subs we’ve
worked on previously. Well, subccInsertSelectionDebug, subccDeletDebugPrint, subClearIW are anyway.
There’s a new one. When debugging it’s very likely that you will want to jump around code and set
breakpoints. Unfortunateley, you can’t jump from one breakpoint to the next. Or can you?

The bookmark is a little used feature in VBA. I’ve asked quite a few people and none of them say they use
it and a lot of them have said "Bookmark?". Setting bookmarks allows you to jump around your code.
You have to do it in sequence but hey! I encourage you to use it. I use it a lot!

You can set a bookmark and a breakpoint on the same line. That means you can jump through your
breakpoints.

Clever huh!

Incidentally, this also gives us a method for saving where a set of breakpoints are set. We can jump to the
next bookmark, do WhereAreWe and we have project, module, procedure and module line.

Here’s a piece of code to do that. We can’t actually "set" a breakpoint as such, we have to toggle it. Same
for bookmarks. This code uses the built-in menus for VBA and executes commands from them.

40 subBookMarkAndBreakpoint

Sub subBookMarkAndBreakpoint()

On Error Resume Next
Application.VBE.CommandBars("Menu Bar") _
 .Controls("Edit").Controls("Bookmarks").Controls("Toggle BookMark").Execute
Application.VBE.CommandBars("Menu Bar") _
 .Controls("Debug").Controls("Toggle Breakpoint").Execute

 Page 114/ 324

On Error GoTo 0

'

End Sub

This is a VERY big deal!

Using this method, it’s possible to run ANY of the built-in commands or added menu commands
programmatically. If you use Smart Indenter for example, you’ll see that it adds an item to the menus.
This allows us to use Smart Indenter programmatically for example. Lots of third-party add-ins add menu
items. This means you can make a button on a toolbar for your favourite doodad so you don’t need to go
through the menus.

So! You’ll need the code for the subs that are pointed to by the buttons, in the same project. Aaaannnd,
don’t forget any procedures they call and procedures they call and so on. You can put them anywhere in
a normal code module or each in their own module or together in a single module or the same module as
the code used to set up the buttons. Possibly a bit of copy and pasting to do then! I personally would
encourage you to use lotsa modules. Easier then to go to a particular set of subs, just click in the explorer.
On the other hand, putting lots of subs into a single module means you have a drop-down listing all of the
subs/functions in alphabetical order. Your choice. It always means proliferation of duplicate code. No
real solution for there but we’ll discuss that later.

Oh, depending on how you dealt with subMsgBox way back, you may need that as well.

Running subBrandNewBarAndButton will set up a floating toolbar with four buttons. It doesn’t look very
nice though. For one thing all the icons are the same!

Okay! In the VBE set a breakpoint on the following line.

Run the sub.

 Page 115/ 324

When it stops at the breakpoint, open the Locals window and look at the properties for myBar. You won’t
be able to look at them any other way.

 Page 116/ 324

You’ll see Height and Width.

In the immediate window set the height to a large number and of course press return.

Forget it. Nothing will change.

Release the breakpoint and set another for after the first button has been instantiated.

 Page 117/ 324

After stopping at that breakpoint, Set the new button control width in the immediate window. I know the
resolution is small here but there’s a lot going on and I wanted to capture all of it. There’s the button
being wider, the breakpoint, the property of the button,and the command in the immediate window.

The command bar will format itself to the size of the buttons horizontally.

So, the button properties control at least some of the toolbar properties.

There’s a lot of code and lists on the internet about FaceIds. Put whatever number you like for each
button to make it pretty.

A nice place to have your new toolbar is just to the left of the codepane so you don’t have to move the
mouse too far.

And remember remember, use the toolbar/buttons on OTHER PROJECTS.

Here’s the final toolbar as set up by the code above.

 Page 118/ 324

Messages

We just mentioned subMsgBox. Two things here. An ordinary MsgBox will show in the application. If
you’re in Excel it will show on a spreadsheet. If you’re in Word it will show on a document and so on. You
don’t nessecarilly want that. In fact, it would be quite useful to have msgs appear in the VBE sometimes.
While we’re at it, the other thing about MsgBox is you can’t copy the text!

We can fix that.

We do this by using a UserForm. We’ve mentioned those before.

We have code to put into a userform to make it stay in the VBE. Now we need to display a message. We
can add some MSgBox functionality to it as well.

A userform is for all intents a class module. We can set up properties in a userform to set and return
information.

Let’s start with the userfom. Insert one. Change its’ name to frmMsgBox. Add the code given way above
for the initialize and terminate events and subMakeParent. See, initialize and terminate, just like grown
up OOP! Hehehe.

Run it just to make sure. You should get a blank form that stays in the VBE. In fact, I garuntee you will.

Now we need code to run it… oh… and code to get let set properties of the class, er, userform.

While we’re in the userform here’s code to set up the properties. I’m leaving out MakeParent and
Terminate.

41 Userform/class properties for subMsgBox

Option Explicit

Private Const C_USERFORM_CLASSNAME = "ThunderDFrame"

Private Declare Function SetParent Lib "user32" (_
 ByVal hWndChild As Long, _
 ByVal hWndNewParent As Long) As Long

Private Declare Function FindWindow Lib "user32" Alias "FindWindowA" (_
 ByVal lpClassName As String, _
 ByVal lpWindowName As String) As Long

 Page 119/ 324

Private lngmAnswer As Long

Private Sub cmdCancel_Click()
lngmAnswer = vbNo
Me.Hide
'

End Sub
Private Sub cmdNo_Click()
lngmAnswer = vbNo
Me.Hide
'

End Sub
Private Sub cmdOK_Click()
lngmAnswer = vbOK
Me.Hide
'

End Sub
Private Sub cmdOK_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)
If KeyAscii = 27 Then
 Me.Hide
End If
'

End Sub
Private Sub cmdYes_Click()
lngmAnswer = vbYes
Me.Hide
'

End Sub
Private Sub UserForm_Activate()

Me.Left = 10
Me.Top = 300

 Page 120/ 324

'

End Sub
Private Sub UserForm_Initialize()

subMakeParent

'Application.VBE.MainWindow.Visible = True
'Application.VBE.MainWindow.SetFocus
'

'

End Sub
Public Property Get Answer() As Long

Answer = lngmAnswer
'

End Property
Public Property Let Answer(ByVal lngpAnswer As Long)

'

End Property
Property Let Title(ByVal spTitle As String)

Me.Caption = spTitle

'

End Property
Public Property Let SetButtons(ByVal lngpSetButtons As Long)

Select Case lngpSetButtons
Case vbOK
 Me.cmdCancel.Visible = False
 Me.cmdYes.Visible = False

 Page 121/ 324

 Me.cmdNo.Visible = False

Case vbYesNo
 Me.cmdCancel.Visible = False
 Me.cmdOK.Visible = False

Case vbCritical
 Me.cmdCancel.Visible = False
 Me.cmdYes.Visible = False
 Me.cmdNo.Visible = False

End Select

'

End Property
Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

If CloseMode = vbFormControlMenu Then
 Me.Hide
 Cancel = True
 DoEvents
End If

'

End Sub

Shades of making a procedure/Sub a class!

Here’s a pickie of my form in the designer.

 Page 122/ 324

9 My MsgBox UserForm

The big rectangle in the middle is a text box with the same background colour as a normal msgbox, The
yellow doodads are command buttons.

I’ve just done the form code which has the code for the forms and buttons. But! The important bit is how
to use it!

Here’s the code to do that in a standard code module. I called mine mMsgBox. Yeah, I know, predictable.
Also, and lots of people know this and skim over it, there are usually two ways of presenting things. As a
Sub or as a Function. Many people are fond of "functional" programming where everything returns a
status. I’m presenting the function. The sub is just outputting a message and stopping when the OK
button is pressed. The function here returns an "answer".

There’s some important stuff here. So, I’m going to mini walkthrough.

 Page 123/ 324

42 Using the MsgBox userform

Option Explicit

Private Sub subtestfrmMsgBox()

Debug.Print fncMsgBox("test", vbYesNo)

'

End Sub
Public Function fncMsgBox(_
 spMessage As String, _
 Optional lngpSetButtons As Long = 1, _
 Optional spTitle As String = "" _
)
' This is to run a form to display a message.
'
' The form is made a subform of the VBE so that
' the message stays in the VBE rather than
' displaying in the application.
'

Dim vbplProject As VBIDE.VBProject
Dim vbclComponent As VBIDE.VBComponent

Note the blnl prefix… bln for Boolean, l for local.

Dim blnlFound As Boolean
Dim lnglAnswer As Long
Dim lnglSetButtons As Long

blnlFound = False

 Page 124/ 324

The For..Next loop here is something you’ll see a lot of while working in the VBE for looping
through Projects.

For Each vbplProject In Application.VBE.VBProjects
 If vbplProject.Protection = vbext_pp_locked Then
 Else
 For Each vbclComponent In vbplProject.VBComponents
 Select Case vbclComponent.Type
 Case vbext_ct_MSForm

We’re looking for a component with the name of our form. If we don’t find it then we run a
normal MsgBox. Otherwise we Show the form.

 If vbclComponent.Name = "frmMsgBox" Then
 lnglAnswer = fncRealMsgBox(spMessage, lngpSetButtons, spTitle)
 blnlFound = True
 End If
 End Select
 Next vbclComponent
 End If
 If blnlFound = True Then
 Exit For
 End If
Next vbplProject

If blnlFound = False Then
 ' Use the standard msgbox.

We haven’t found a module anywhere in this project with the name of our form for frmMsgBox
so do an ordinary MsgBox.

 lnglAnswer = MsgBox(spMessage, lngpSetButtons, spTitle)
End If

fncMsgBox = lnglAnswer
'

End Function

We run this if we find a module with the name of our form.

Private Function fncRealMsgBox(_
 spMessage As String, _
 lngpSetButtons As Long, _

 Page 125/ 324

 spTitle As String _
)

Dim lnglAnswer As Long
Dim lnglSetButtons As Long
Dim frmForm As frmMsgBox

These are the important bits. It’s a class. We’ve set up properties in the class to accept data
and set its properties. The data is read by the class/form and the code therein executed.

Set frmForm = New frmMsgBox

frmForm.txtMsg.Text = spMessage
frmForm.SetButtons = lngpSetButtons
frmForm.Title = spTitle

Ok, we have data in the class properties, now let the dog see the rabbit.

frmForm.Show

This is the VERY important bit. Do NOT unload the form until we get our answer back from
the class/form.

lnglAnswer = frmForm.Answer

NOW we can unload the form!

Unload frmForm

Return the answer from the form.
fncRealMsgBox = lnglAnswer
'

End Function

Now we have a MsgBox that you can copy text from AND is more colourful, AND stays in the VBE!

 Page 126/ 324

Here’s a pic of it in action. You can see the VBE behind it. I’ve highlighted the two modules concerned in
the left explorer pane. Note that when I was working on the module mMsgBox, I prefixed it with A_ so
that it appeared at the top of the list. It’s not such a big deal but it definateley makes it easier to find. Did
I mention how lazy I was?

Figure 10 subMsgBox in use.

You can do the same with a userform to make an InputBox. Here’s a gander of mine in the designer.

 Page 127/ 324

11 My InputBox UserForm

Note the colours again! I’m trying to be friendly and jolly and consistent!

Some of the "important" things about this is that if you for example disaply an error number and its

description, YOU CAN COPY THE MESSAGE! Hehehe. You can also show the "message" form where
you want. Can’t think of anything else at the moment.

 Page 128/ 324

Debugging and Tracing

While we are on the subject of debugging, which we weren’t really but what the hell, a nice thing to have
sometimes is a trace report of the procedures that have been passed through maybe even with times
spent inside them.

We know we can add any code we like to procedures now, so we can insert a debug.print at the top and
bottom of procedures and also a time at the top and bottom and time spent.

This would look something like:

Put this code in a new module and run subS1.

43 Tracing example 1

Option Explicit

Sub subS1()
Debug.Print "Start subS1 " & Timer()

subS2
subS3

Debug.Print "End subS1 " & Timer()
'

End Sub
Sub subS2()
Debug.Print "Start subS2 " & Timer()

subS4

Debug.Print "End subS2 " & Timer()
'

End Sub
Sub subS3()

Dim slStr As String

Debug.Print "Start subS3 " & Timer()

 Page 129/ 324

slStr = fncF1()
subS4

Debug.Print "End subS3 " & Timer()
'

End Sub
Sub subS4()
Debug.Print "Start subS4 " & Timer()

Debug.Print "End subS4 " & Timer()
'

End Sub
Function fncF1()
Debug.Print "Start fncF1 " & Timer()

Debug.Print "End fncF1 " & Timer()
'

End Function

With no changes, the code will execute so quickly the Timer() value would be practically the same for all
of the debug.prints as you can see from the following copied from the immediate window.

Start subS1 56021.58
Start subS2 56021.59
Start subS4 56021.59
End subS4 56021.59
End subS2 56021.59
Start subS3 56021.59
Start fncF1 56021.59
End fncF1 56021.59
Start subS4 56021.59
End subS4 56021.59
End subS3 56021.6
End subS1 56021.6

 Page 130/ 324

Let’s add a sub to slow things down a bit. A call to this sub goes into each of the other subs and the
function.

44 subSpendTime

Sub subSpendTime()

Dim lnglN As Long

For lnglN = 1 To 10000
 DoEvents
Next lnglN

'

End Sub

You don’t need debug.prints in the slowdown sub.

After running subS1 a few times, you’ll find that the immediate window gets a bit hard to follow.

Hang on though… we wrote a procedure to clear that didn’t we?! Let’s put that at the top of our code!

45 Tracing Example 2

Sub subS1()
Debug.Print "Start subS1 " & Timer()
subSpendTime
subClearIW

subS2
subS3

Debug.Print "End subS1 " & Timer()
'

End Sub

That’s better!

 Page 131/ 324

Hmmmm. If we have a lot of subs though it’s going to be a real pain to write all of those debug.print and
subSpendTime lines in at the top and bottom of each one. But we know we can add code with code so
why don’t we do that!

Great!

But how do we page through each procedure in a module? Interesting.

We know how to go through the modules from the stuff we wrote for frmMsgBox when we looked
through all the project modules for the name frmMsgBox. We know we can use cWhereAreWe to get the
number of lines of code in procedures. But where do we start?

In the frmMsgBox code we looked at the Component.Name to see if we had our form in the project so we
know we can access the component and therefore the code module.

I think I’ve said before that VBA VBE code is MODULE oriented so you can’t just go from one procedure
to the next even if you know the names. You can however get the number of declaration lines in a module
and the total count of module lines using:

Application.VBE.ActiveCodePane.CodeModule.CountOfLines

And:

Application.VBE.ActiveCodePane.CodeModule.CountOfDeclarationLines

So, we can get the last line. With ProcOfLine we can get the name of the procedure and vbext_pk_Proc

. Then use those in ProcCountLines to get how many lines there are in it. This will give us the end line
number of the above procedure! Even after we’ve added code!

Let’s use this to page through all the procs in a module. That’s why I asked you to put the last set of code

in a new module. We’re only going to use the active code pane. This is in fact the code for a MODULE.

The following will list all of the procedures in a module that is showing in the code pane. We could actually
go forward or down the module, but since this is part of a procedure that will add code the module and if

we plan to insert code in a module then it’s better if we go UP the module so as to preserve line numbers.

Most of this is taken DIRECTLY from cWhereAreWe.

Run it by going to the new module and using the macros (shudder) menu.

46 subListProcsToImediateWindow

Sub subListProcsToImediateWindow()

Dim lnglCountOfDeclarationLines As Long
Dim lnglOriginalModuleLineCount As Long

 Page 132/ 324

Dim lnglCurrentModuleLine As Long

Dim vbplProject As VBIDE.VBProject
Dim vbclComponent As VBIDE.VBComponent

Dim vbcmlCodeModule As VBIDE.CodeModule

Dim vbcplCodePane As VBIDE.CodePane
Dim slProjectNameName As String

Dim slModuleName As String
Dim slProcedureName As String

Dim lnglProcCountLines As Long

Set vbplProject = Application.VBE.ActiveVBProject

slProjectNameName = vbplProject.Name

Set vbcplCodePane = Application.VBE.ActiveCodePane

Set vbcmlCodeModule = vbcplCodePane.CodeModule
slModuleName = vbcmlCodeModule.Name
slModuleName = vbcplCodePane.CodeModule.Parent.Name

Set vbclComponent = vbplProject.VBComponents(slModuleName)

lnglCountOfDeclarationLines = vbcmlCodeModule.CountOfDeclarationLines
lnglOriginalModuleLineCount = vbcmlCodeModule.CountOfLines
lnglCurrentModuleLine = lnglOriginalModuleLineCount

Do

 If lnglCurrentModuleLine <= lnglCountOfDeclarationLines Then
 Exit Sub
 End If

 slProcedureName = vbcmlCodeModule.ProcOfLine(lnglCurrentModuleLine,

vbext_pk_Proc)
 Debug.Print slProcedureName

 lnglProcCountLines = vbcmlCodeModule.ProcCountLines(slProcedureName,

vbext_pk_Proc)
 lnglCurrentModuleLine = lnglCurrentModuleLine - lnglProcCountLines

 Page 133/ 324

Loop

' ***

End Sub

Here’s the result:

subSpendTime 11 44
fncF1 6 38
subS4 6 32
subS3 12 20
subS2 8 12
subS1 11 1

Now then, we want to Insert Lines of code. That last procedure is a bit tricky because the last line of the

module is NOT End Sub. We have to check the line and go backwards looking for End . In fact, it doesn’t
hurt and we may as well do this for all of the procedures. What about the top of the procedure though,
especially using my parameter set up? Ideally, we want to debug.print just before any of the other code
in the procedure. If these lines are going to be temporary then we can insert directly after ProcBodyLine.

Before we insert anything we should really delete anything that’s there already.

Here’s a picture of using the buttons we set up earlier, from a different project of course, to do just that.

 Page 134/ 324

And here’s the code to insert trace lines:

47 subAddTraceLinesToAModule

Sub subAddTraceLinesToAModule()

Dim lnglCountOfDeclarationLines As Long
Dim lnglOriginalModuleLineCount As Long

Dim lnglCurrentModuleLine As Long
Dim vbplProject As VBIDE.VBProject

Dim vbclComponent As VBIDE.VBComponent
Dim vbcmlCodeModule As VBIDE.CodeModule

Dim vbcplCodePane As VBIDE.CodePane

Dim slProjectNameName As String
Dim slModuleName As String
Dim slProcedureName As String

Dim lnglProcCountLines As Long
Dim lnglInsertBottom As Long
Dim lnglInsertTop As Long

Dim slInsertTop As String
Dim slInsertBottom As String

Dim slDQ As String
Dim slLine As String
Dim lnglEndDefinitionLine As Long

slDQ = Chr(34)

Set vbplProject = Application.VBE.ActiveVBProject
slProjectNameName = vbplProject.Name

Set vbcplCodePane = Application.VBE.ActiveCodePane

Set vbcmlCodeModule = vbcplCodePane.CodeModule
slModuleName = vbcmlCodeModule.Name
slModuleName = vbcplCodePane.CodeModule.Parent.Name

Set vbclComponent = vbplProject.VBComponents(slModuleName)

 Page 135/ 324

lnglCountOfDeclarationLines = vbcmlCodeModule.CountOfDeclarationLines

lnglOriginalModuleLineCount = vbcmlCodeModule.CountOfLines
lnglCurrentModuleLine = lnglOriginalModuleLineCount

Do
 If lnglCurrentModuleLine <= lnglCountOfDeclarationLines Then

 Exit Sub
 End If

 slProcedureName = vbcmlCodeModule.ProcOfLine(lnglCurrentModuleLine, vbext_pk_Proc)
 lnglInsertBottom = lnglCurrentModuleLine

 slInsertBottom = "Debug.Print " & slDQ & "End Of " & slProcedureName & " " & slDQ & " &

Timer() "
 slInsertTop = "Debug.Print " & slDQ & "Start Of " & slProcedureName & " " & slDQ & " &

Timer() "

 lnglProcCountLines = vbcmlCodeModule.ProcCountLines(slProcedureName,

vbext_pk_Proc)
 lnglCurrentModuleLine = lnglCurrentModuleLine - lnglProcCountLines

 Do

 slLine = vbcmlCodeModule.Lines(lnglInsertBottom, 1)
 If Left$(slLine, 4) = "End " Then
 Exit Do

 End If
 lnglInsertBottom = lnglInsertBottom - 1
 Loop
 vbcmlCodeModule.InsertLines lnglInsertBottom, slInsertBottom

 lnglInsertTop = vbcmlCodeModule.ProcBodyLine(slProcedureName, vbext_pk_Proc)

 Do
 slLine = vbcmlCodeModule.Lines(lnglInsertTop, 1)
 If Right$(slLine, 1) <> "_" Then
 lnglInsertTop = lnglInsertTop + 1
 Exit Do

 Page 136/ 324

 End If

 lnglInsertTop = lnglInsertTop + 1
 Loop

 vbcmlCodeModule.InsertLines lnglInsertTop, slInsertTop

Loop

' ***

End Sub

And the code after running the above:

Option Explicit

Sub subS1()
Debug.Print "Start Of subS1 " & Timer()

subS2
subS3

' ***
Debug.Print "End Of subS1 " & Timer()
End Sub
Sub subS2()
Debug.Print "Start Of subS2 " & Timer()

subS4

' ***
Debug.Print "End Of subS2 " & Timer()
End Sub
Sub subS3()
Debug.Print "Start Of subS3 " & Timer()

Dim slStr As String

 Page 137/ 324

slStr = fncF1()
subS4

' ***
Debug.Print "End Of subS3 " & Timer()
End Sub
Sub subS4()
Debug.Print "Start Of subS4 " & Timer()

' ***
Debug.Print "End Of subS4 " & Timer()
End Sub
Function fncF1()
Debug.Print "Start Of fncF1 " & Timer()

' ***
Debug.Print "End Of fncF1 " & Timer()
End Function
Sub subSpendTime()
Debug.Print "Start Of subSpendTime " & Timer()

Dim lnglN As Long

For lnglN = 1 To 10000
 DoEvents
Next lnglN

' ***
Debug.Print "End Of subSpendTime " & Timer()
End Sub

 Page 138/ 324

Right. We’ve got all of this trace code in now that prints to the immediate window. We could just as
easily have executed a procedure that logs to a file. As it stands only the procedure name is output but
we could also have the module name and line number if we wanted. We could even implement a Stack,
and indeed a lot of third party programs do exactly that.

Timer() is a bit crude. We could have a function there that prints out the time spent in the procedure
rather than have to work it out. There’s a high resolution timer class in the appendices that could be
used as well but that is probably a bit of overkill for normal processes.

I think you get the idea though.

We can Add, Delete and Replace code lines in procedures in the VBE but it’s essential we know where
we are.

Once we’re done with all of this debug.printing what are we going to do. Delete it of course! We can
use either our debug extra command bar or we can "wrap" the procedure subccDeleteDebugPrint in
code similar to subListProcsToImediateWindow. Within that, instead of printing the procedure name
run subccDeleteDebugPrint.

But, you say, that only works if the cursor is actually in the procedure.

You’re right.

We know a module line number so we can use SetSelection to actually go to a place in the code.

Application.VBE.ActiveCodePane.SetSelection lnglCurrentModuleLine, 1, lnglCurrentModuleLine, 1

There are a number of things of interest here. To delete all of the Debug.Print lines in a module we
could:

1. Loop through the module procedures, go to that procedure and run subccDeletDebugPrint

2. Loop through all of the module lines, going to them and when we get to a different
 Procedure, run subccDeletDebugPrint

3. Loop through all the module lines and run subccDeletDebugPrint for every line

4. Loop through all of the module lines and delete any that have Debug.Print in them

And of course we could extend this for a whole project or all of the open projects.

A lot of the following is taken directly from code we’ve already written.

 Page 139/ 324

Here’s the code for number one:

48 subDeletDebugPrintForModule1

Sub subDeletDebugPrintForModule1()

Dim lnglCountOfDeclarationLines As Long

Dim lnglOriginalModuleLineCount As Long
Dim lnglCurrentModuleLine As Long

Dim vbplProject As VBIDE.VBProject
Dim vbclComponent As VBIDE.VBComponent

Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbcplCodePane As VBIDE.CodePane

Dim slProjectNameName As String

Dim slModuleName As String
Dim slProcedureName As String
Dim lnglProcCountLines As Long

Set vbplProject = Application.VBE.ActiveVBProject
slProjectNameName = vbplProject.Name

Set vbcplCodePane = Application.VBE.ActiveCodePane

Set vbcmlCodeModule = vbcplCodePane.CodeModule
slModuleName = vbcmlCodeModule.Name
slModuleName = vbcplCodePane.CodeModule.Parent.Name

Set vbclComponent = vbplProject.VBComponents(slModuleName)

lnglCountOfDeclarationLines = vbcmlCodeModule.CountOfDeclarationLines
lnglOriginalModuleLineCount = vbcmlCodeModule.CountOfLines
lnglCurrentModuleLine = lnglOriginalModuleLineCount

Do

Get out?
 If lnglCurrentModuleLine <= lnglCountOfDeclarationLines Then
 Exit Sub
 End If

 slProcedureName = vbcmlCodeModule.ProcOfLine(lnglCurrentModuleLine, vbext_pk_Proc)

 Page 140/ 324

Go to the linenumber in the module
 Application.VBE.ActiveCodePane.SetSelection lnglCurrentModuleLine, 1,

lnglCurrentModuleLine, 1
 lnglProcCountLines = vbcmlCodeModule.ProcCountLines(slProcedureName,

vbext_pk_Proc)

Set the linenumber to the top of the next procedure. Don’t forget we’re going UP the module to

preserve line numbers!

 lnglCurrentModuleLine = lnglCurrentModuleLine - lnglProcCountLines

Here’s where we make use of the procedure we’ve already written.

 subccDeletDebugPrint

Loop

' ***
End Sub

 Page 141/ 324

Here’s the code for number two:

 Page 142/ 324

Guess what the following code is for:

 Page 143/ 324

Aaaaannnnd, here’s the code for number four:

 Page 144/ 324

I think you can see that it’s possible to also insert highly customized error code too. This could include
getting a telephone number from a source and displaying it for support if anything was up. That could
be changed depending who was "on duty" as it were. That means a support person could be contacted
whenever! Done that, Been there. It worked well.

In fact, we can insert anything we want to!

 Page 145/ 324

The Registry

There are some items we’ve dealt with that are hard coded. These were the prefixes and scope letters
used in the naming convention. I keep these in an INI file and have written procedures to retrieve them.

I’m NOT putting that code here though so you’ll have to roll your own. You can even download ready
made classes to do that stuff. Lots of stuff out there. I use an INI file because it’s easy to edit and very
portable as a text file. In fact, MZ-Tools uses an INI file as well as using the registry. Well it does for the
free version 3 anyway. Having said that, INI files are a bit crude, and registry access because it’s in memory
is probably faster. MZ-Tools 8 has embrassed XML files.

It sort of highlights though, the need to set and retrieve relatively static data sometimes.

Did you know that VBA has its own special key in the registry and its own set of four built in calls to set
values there and get values from there?

It’s:

49 Registry key for VBA

Computer\HKEY_CURRENT_USER\Software\VB and VBA Program Settings\

If you open the registry and look for this key you may not actually find it. It’s created at the first
SaveSettings call.

Using the four "native" VBA internal calls makes a lot of working with the registry pretty easy. The calls
are:

50 VBA Registry calls

For….

AppName = "Mike&Lisa"
Section = "Registgry"
Key = "Setting A"
Setting = "Page 132"

SaveSetting AppName,Section,Key,Setting

SaveSetting "Mike&Lisa","Registgry","Setting A","Page 132"
Writes to/Creates
HKEY_CURRENT_USER\Software\VB and VBA Program Settings\Mike&Lisa\Registry\Setting

A\

 Page 146/ 324

Value = 132

Variable = GetSetting(AppName,Section,Key[,Default])
Gets the value or key from

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\Mike&Lisa\Registry\Setting

A\
Variable = 132

DeleteSettings AppName[,Section[,Key]]

Deletes a key or section from

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\Mike&Lisa\Registry\Setting

A\

Variant = GetAllSettings(AppName,Section)
Gets a list of key settings and their values from
HKEY_CURRENT_USER\Software\VB and VBA Program Settings\Mike&Lisa\Registry\Setting

A\
Variant = 132

Depending on what’s in Mike&Lisa\Registry, Variant may return an array. Hence, it’s a er, variant.

There’s a non problem here In my not so very humble opinion. If you’re going to save stuff in the registery
then these four calls are simple and mostly all you need to use. Everything is below a fixed key you can
find and check with Regedit and so on and so on.

However, it’s not free access to the registry. That is possible with API calls though. There’s a LOT out
there on the world wide web about that. But why would you want to do that? If you want to put your
data for your application or program in an obscure registry place that no one can find, and I can see some
people would want to do that, use the API calls. You may also want to retrieve a value that belongs to
some application. Otherwise these four are really all you need for your VBA application.

The documentation says that it’s possible, though I don’t advise it, to store a massive 1Mb of data in a
registry value. I don’t advise it because if you need to store that much data then you probably need to
rethink why you wanr to store that much.

This is interesting. Open the immediate window and type or copy/paste:

51 SaveSetting statement

SaveSetting "Your Name","Your Name Section","Your Name Key","Your Address"

 Page 147/ 324

I think you can work out what to put where where.

Now open up regedit and search for "Your Name". Got it? Okay. Hit F3 to search again.

You’ll find two entries.

Delete the first one.

Search again.

You won’t find the other entry. The second entry was "cloned". If you want the whys and wherefores of
the registry google is your friend.

Anyroad, here’s a pic of the registry after I’ve run the SaveSetting line above from the immediate window.

12 Registry after SaveSetting

 Page 148/ 324

Line Numbers

A lot of people depend on line numbers to give an exact place for where code goes wrong. We can insert
line numbers a lot of ways. One of the most popular, is to use an add-in for VBA. One such is MZ-Tools.
The paid for version is version 8, and that version will allow you to set a start line number and an
increment.

Version 3 however, the "free" one, will put line numbers into a procedure or a complete module starting
at 10 and incrementing by 10 for each procedure. Hmm, I remember that from GWBASIC a while back.
Not gonna say when, give my age away! Hehehe. If there is an error in the code then the line number

can be printed in an error message with the ERL function, but, only if the line is numbered.

MZ-Tools adding line numbers to procedures is fine. It will also add error code that prints out the module
and procedure and you can change the error code to add ERL and anything else. Highly customizable.

We can add line numbers programmatically as well. Leaving aside MZ-Tools for the nonce, if we want to
add line numbers programmatically, we don’t have to start at 10 and increment by 10. We’ve said a few
times now that VBA works at the codemodule level with module line numbers. We can add line numbers
of the module to a procedure. Reporting the ERL then gives the exact line which is going wrong of the

MODULE.

It’s not very widely known, but you don’t actually need to put line numbers on all lines of a procedure.
Just putting a line number on a line that maybe will go wrong will work. This means we can number lines
in different modules with unique line numbers if we want. For example, things aren’t likely to go wrong
with …

slName = ""

 Page 149/ 324

Now! Using the registry functions we talked about earlier, If a key isn’t there then DeleteSettings will
return an error number 5.

13 Error on DeleteSetting

But, you don’t see any line number being reported.

If we use MZ-Tools to add error code and line numbers we get something like:

52 subDeleteSettings example

Option Explicit

Sub subDeleteSettingExample()

 Dim slAppName As String

10 On Error GoTo subDeleteSettingExample_Error
20 slAppName = "Mike&LisasApp"

 Page 150/ 324

 ' Some Code.

30 DeleteSetting slAppName

 ' Some more Code.

 '

40 On Error GoTo 0

50 Exit Sub

subDeleteSettingExample_Error:

60 MsgBox "Error " _
 & Err.Number _
 & vbCrLf _
 & Err.Description _

 & vbCrLf _

 & "Procedure subDeleteSettingExample" _

 & vbCrLf _

 & "Module Module Module3" _
 & vbCrLf _
 & " Line " & Erl

End Sub

You’ll see that ERL is on the last line of the MsgBox continuations. This isn’t in the standard code
inserted by MZ-Tools. In fact, I’ve altered the whole of the MsgBox line in my copy of MZ-Tools as
above.

 Page 151/ 324

The error comes out as…

14 Error message from handler code

Line 30 is:

30 DeleteSetting slAppName

Say we have a large module with lots of procs in it, which actually is my experience of many VBA users.
It can take a while to navigate to that particular line.

Aside: MZ-Tools will add line numbers to the complete module if the MODULE is highlited/selected in
the project explorer.

What if we did this:

 Page 152/ 324

15 Module line number on code line

I’ve highlighted the important bits. I’ve removed the line numbers and just put the MODULE line
number on the line that may error.

 Page 153/ 324

Now the error message looks like…

16 Error message with module line number

And we can do even more! We know the project is the active one, we know the module, it’s even in the
message, we know the line number. In subDeletDebugPrintForModule we used…

Application.VBE.ActiveCodePane.SetSelection
lnglCurrentModuleLine, 1,
lnglCurrentModuleLine, 1

… To go to a procedure, so we could check things out there.

We can use that!

53 subGoToLine

Sub subGoToLine(_
 spModuleName As String, _
 lngpLineNumber As Long, _
 Optional vbppProject As VBIDE.VBProject _
)

Dim vbplProject As VBIDE.VBProject
Dim vbcmlCodeModule As VBIDE.CodeModule

 Page 154/ 324

Dim vbcplCodePane As VBIDE.CodePane

If vbppProject Is Nothing Then
 Set vbplProject = Application.VBE.ActiveVBProject

Else
 Set vbplProject = vbppProject

End If

Set vbcmlCodeModule = vbplProject.VBComponents(spModuleName).CodeModule
vbcmlCodeModule.CodePane.Show
Set vbcplCodePane = Application.VBE.ActiveCodePane

vbcplCodePane.SetSelection lngpLineNumber, 1, lngpLineNumber, 1

'

End Sub

Those who know VBA a little, will realize that the Project is last in the list of parameters because it is
optional.

We can put an inputbox or even an fncInputBox there if we like for the line number, or we can feed the
data straight into the sub from the error routine. Lots of options!

Cool!

Let’s get back to module line numbers.

It’s just not possible to automate picking out lines that may error or not.e to that. Adding module line
numbers to a complete procedure though is a different beast.

From as far back as subccSortDims, we know we can pick up each line in a procedure. We know that
some lines definateley don’t need a line number:

• Comment lines above the definition line

• The Definition line

• Blank Lines

• Comment lines in the code

• Dim etc lines

• Definition lines

• The last line

 Page 155/ 324

This goes with what we said about not all lines in a procedure needing line numbers.

We can test for all of those.

Some we don’t need to. Definition lines do not have a line number. Dim will be okay with a line number
but comments and blank lines with line numbers seem to confuse VBA. So, we’ll zip past them!

For this I’ve added a few Do..Loops to cWhereAreWe along with the appropriate local and module
variables and Get Procedures to report…

1 First Dim Line

2 Last Dim Line Plus 1

3 Line After the definition Plus 1

4 Wether there is code between first and last Dim lines

lnglFirstDimLine = 0
lnglCLine = lnglModuleProcBodyLine

Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCLine,

1))

 If Left$(slLine, 4) = "Dim " Then
 lnglFirstDimLine = lnglCLine
 Exit Do

 ElseIf Left$(slLine, 6) = "Const " Then
 lnglFirstDimLine = lnglCLine

 Exit Do
 ElseIf Left$(slLine, 7) = "Static " Then
 lnglFirstDimLine = lnglCLine
 Exit Do
 End If

 lnglCLine = lnglCLine + 1

 If lnglCLine >= lnglModuleProcEndLine Then

 Page 156/ 324

 Exit Do

 End If
Loop

lnglLastDimLinePlus1 = 0
lnglCLine = lnglModuleProcEndLine

Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCLine,

1))

 If Left$(slLine, 4) = "Dim " Then

 lnglLastDimLinePlus1 = lnglCLine + 1
 Exit Do

 ElseIf Left$(slLine, 6) = "Const " Then
 lnglLastDimLinePlus1 = lnglCLine + 1
 Exit Do
 ElseIf Left$(slLine, 7) = "Static " Then

 lnglLastDimLinePlus1 = lnglCLine + 1

 Exit Do

 End If

 lnglCLine = lnglCLine - 1

 If lnglCLine <= lnglModuleProcBodyLine Then
 Exit Do

 End If

Loop

lnglLineAfterDefinitionPlus1 = 0
lnglCLine = lnglModuleProcBodyLine
Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCLine,

1))

 If Right$(slLine, 1) <> "_" Then

 Page 157/ 324

 If lnglCLine = lnglModuleProcBodyLine Then

 lnglLineAfterDefinitionPlus1 = lnglCLine + 1
 Else

 lnglLineAfterDefinitionPlus1 = lnglCLine

 End If
 Exit Do

 End If

 lnglCLine = lnglCLine + 1

Loop

blnlNonConsecutiveDims = False

lnglCLine = lnglLastDimLinePlus1 – 1
Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCLine,

1))

 If Left$(slLine, 4) = "Dim " Then
 ElseIf Left$(slLine, 6) = "Const " Then
 ElseIf Left$(slLine, 7) = "Static " Then
 ElseIf Left$(slLine, 1) = "'" Then

 ElseIf Len(slLine) = 0 Then

 Else

 blnlNonConsecutiveDims = True

 Exit Do
 End If

 lnglCLine = lnglCLine – 1

 If lnglCLine <= lnglLineAfterDefinitionPlus1 - 1

Then
 Exit Do
 End If
Loop

 Page 158/ 324

Now we can start at the end of the Dims if there isn’t any code in between them till the end of the
procedure. This means we don’t have to test for Dim/Const/Static. And don’t forget we have code to
move all of the Dims together at the top!

Here’s the code to insert MODULE line numbers.

54 subccInsertModuleLineNumbersInProcedure

Sub subccInsertModuleLineNumbersInProcedure()

' Insert line numbers of the MODULE into the

' current procedure.
'

Dim lnglEndLine As Long
Dim lnglStartLine As Long
Dim lnglELine As Long
Dim lnglSLine As Long

Dim lnglECol As Long
Dim lnglSCol As Long
Dim slSelection As String

Dim lnglCurrentModuleLine As Long
Dim clWhereAreWe As cWhereAreWe
Dim lnglModuleEndLine As Long
Dim slLine As String

Dim slLineArray() As String
Dim slOLine As String
Dim vbcmlCodeModule As VBIDE.CodeModule

Dim vbcplCodePane As VBIDE.CodePane
Dim lnglCLine As Long
Dim slTrimLine As String

Set clWhereAreWe = New cWhereAreWe

lnglModuleEndLine = clWhereAreWe.ModuleProcEndLine

Set vbcmlCodeModule = clWhereAreWe.CodeModule

 Page 159/ 324

Set vbcplCodePane = clWhereAreWe.CodePane

vbcplCodePane.GetSelection lnglCurrentModuleLine, lnglSCol, lnglELine, lnglECol

' Is there a selection?

slLine = clWhereAreWe.CurrentLine
slSelection = clWhereAreWe.Selection

lnglSLine = clWhereAreWe.CurrentModuleLine
lnglSCol = clWhereAreWe.SCol
lnglELine = clWhereAreWe.ELine

lnglECol = clWhereAreWe.ECol

If Len(slSelection) > 0 Then

 lnglStartLine = lnglSLine
 lnglEndLine = lnglELine

Else

 lnglStartLine = clWhereAreWe.LastDimLinePlus1

 lnglEndLine = lnglModuleEndLine

End If

' Start replacing lines.

lnglCLine = lnglStartLine
Do

 ' End of sub?

 If lnglCLine >= lnglEndLine Then
 Exit Do
 End If

 slOLine = vbcmlCodeModule.Lines(lnglCLine, 1)
 slTrimLine = Trim$(slOLine)

 If Len(Trim$(slTrimLine)) = 0 Then
 ElseIf Left$(slTrimLine, 1) = "'" Then

 Page 160/ 324

 Else

 ' Does this line already have a number?

 slLineArray = Split(slTrimLine, " ")
 If Not IsNumeric(slLineArray(0)) Then

 ' Replace line.

 vbcmlCodeModule.ReplaceLine lnglCLine, CStr(lnglCLine) & " " & slOLine

 End If

 End If

 lnglCLine = lnglCLine + 1

Loop

'

End Sub

And guess what we do when we don’t want them.

55 subccDeleteLineNumbersInProcedure

Sub subccDeleteLineNumbersInProcedure()
' Delete line numbers
'

Dim lnglEndLine As Long
Dim lnglStartLine As Long
Dim lnglELine As Long
Dim lnglSLine As Long
Dim lnglECol As Long
Dim lnglSCol As Long
Dim slSelection As String

 Page 161/ 324

Dim lnglCurrentModuleLine As Long

Dim clWhereAreWe As cWhereAreWe
Dim lnglModuleEndLine As Long

Dim slLine As String

Dim slLineArray() As String
Dim slOLine As String

Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbcplCodePane As VBIDE.CodePane

Dim lnglCLine As Long

Dim slTrimLine As String

Dim lngLastDimLinePlus1 As Long

Set clWhereAreWe = New cWhereAreWe

lnglModuleEndLine = clWhereAreWe.ModuleProcEndLine

Set vbcmlCodeModule = clWhereAreWe.CodeModule
Set vbcplCodePane = clWhereAreWe.CodePane
vbcplCodePane.GetSelection lnglCurrentModuleLine, lnglSCol, lnglELine, lnglECol

' Is there a selection?
slLine = clWhereAreWe.CurrentLine
slSelection = clWhereAreWe.Selection

lnglSLine = clWhereAreWe.CurrentModuleLine
lnglSCol = clWhereAreWe.SCol
lnglELine = clWhereAreWe.ELine

lnglECol = clWhereAreWe.ECol
lngLastDimLinePlus1 = clWhereAreWe.LastDimLinePlus1
If lngLastDimLinePlus1 = 0 Then
 lngLastDimLinePlus1 = clWhereAreWe.LineAfterDefinitionPlus1
End If

If Len(slSelection) > 0 Then

 lnglStartLine = lnglSLine
 lnglEndLine = lnglELine

 Page 162/ 324

Else

 lnglStartLine = lngLastDimLinePlus1
 lnglEndLine = lnglModuleEndLine

End If

' Start replacing lines.

lnglCLine = lnglStartLine
Do

 ' End of sub?

 If lnglCLine >= lnglEndLine Then
 Exit Do
 End If

 slOLine = vbcmlCodeModule.Lines(lnglCLine, 1)
 slTrimLine = Trim$(slOLine)

 If Len(Trim$(slTrimLine)) = 0 Then
 ElseIf Left$(slTrimLine, 1) = "'" Then

 Else

 ' Does this line already have a number?

 slLineArray = Split(slTrimLine, " ")
 If IsNumeric(slLineArray(0)) Then

 slLine = Mid$(slOLine, Len(slLineArray(0)) + 2)

 ' Replace line.
 vbcmlCodeModule.ReplaceLine lnglCLine, slLine

 End If

 End If

 Page 163/ 324

 lnglCLine = lnglCLine + 1

Loop

'

End Sub

 Page 164/ 324

Recap number two

Let’s have a look at the code we’ve built or built so far.

1 subccSortDims

2 subMsgBox

3 subccSortSelectedDims

4 fncGuessVarType

5 subWhereAreWe

6 cNameExample

7 subInsertGetProperties

8 cWhereAreWe

9 subccSplitAllDims

10 subccInsertSelectionDebug

11 subccDeleteDebugPrint

12 subClearIW

13 cBarEvents

14 subBrandNewBarAndButton

15 subBookMarkAndBreakpoint

16 frmMsgBox

17 subListProcsToImmediateWindow

18 subAddTraceLinesToAModule

19 subDeleteDebugPrintForModule

20 subGoToLine

21 subccInsertModuleLineNumbersInProcedure

22 subccDeleteLineNumbersInProcedure

That’s quite a lot!

Not finished yet though! Hehehehe.

It’s fairly clear from the names in the above list which are Subs, which are Functions, which are classes,
and we can see there’s a UserForm in there as well.

Hang on though… what’s this cc business?

I’m glad you asked that!

 Page 165/ 324

If you write a lot of procedures and run them from the Macros (waves arms to ward the evil off) menu,

then you may find yourself scrolling down that list to get to the one you want. A lot. It would be nice if

the one you are testing or using often was at the top. That list is in alphabetic order. But you can’t

realistically pick the procedure name to put items at the top.Or can you?

Well actually you can. Sort of. You can change the name of the procedure you’re working on to a

temporary name that puts it at the top of the list. Alternatively, you can add another procedure that

calls your procedure but has a name that puts it it the top of the list. This ensures that the procedure
you’re working on will always have the same name. Another tip is to position the procedure you are
working on at the bottom or top of its module. Getting to it is is pretty simple then. Ctrl Home, Ctrl

Down Arrow for example. Then again, USE THE BOOKMARKS LUKE!

Add a new module. For each procedure with "cc" in the name, insert a procedure in the new module to

run it and prefix the procedure name so they are listed in an order you like/want alphabetically.

For example, here’s a portion of my module called aamTopOfMacros. Yes. That name ensures it
appears at the top of the explorer list.

56 aamTopOfMacros

Sub A_subccArrangeMacros()
frmArrangeMacroMenu.Show

' ***
End Sub

Sub A_subccCodeCodeForm()
frmCodeCode.Show
' ***
End Sub

Sub A_subccShutDown()

subccShutDown
' ***
End Sub
Sub AA_subccBackMeUp()
subccBackMeUp
' ***
End Sub
Sub AB_subccDeleteDebugCode()
subccDeleteDebugCode
' ***
End Sub

 Page 166/ 324

Sub AC_subccGoToBottomOfDims()

subccGoToBottomOfDims
' ***

End Sub

Sub AD_subccInsertDims()
subccInsertDims

' ***
End Sub

Sub AE_subccCleanProcedure()

subccCleanProcedure

' ***
End Sub
Sub AF_subccXRefProcedure()

subccXRefProcedure

' ***
End Sub
Sub AG_subccInsertSelectionDebug()
subccInsertSelectionDebug
' ***
End Sub

Sub AH_subccInsertErrorCodeAtLine()

subccInsertErrorCodeAtLine
' ***
End Sub

Sub AI_subccSortDims()
subccSortDims
' ***
End Sub

Sub AJ_subccSmartIndent()
Application.VBE.CommandBars("Code Window").Controls("&Smart Indent").Controls("Indent

&Procedure").Execute
' ***
End Sub
Sub AK_subccDeleteInBetweenLines()
subccDeleteInBetweenLines
' ***
End Sub

 Page 167/ 324

Sub AL_subccInsertComments()

frmInsertComments.Show
' ***

End Sub

Sub AM_subccRemoveEndOfLineComment()
subccRemoveEndOfLineComment

' ***
End Sub

The names will then appear in the (wispers) macros menu with the ones you want at the top, at the top.

None of this is rocket science. But be aware the the procedures called from the procedures will also
appear later in the macros (AAAARRRGGHHH) list. So, you are doubling up. So what.

And I use a userform to arrange items.

You can see from the pictures below that I load all of the procedure names with cc in them to the left list
box. From there I can add them to or remove them from the list on the right. This sort of methodology
with two listboxes is well documented and there are plenty of examples on the Web. The reason I don’t
present my own code here is, as I’ve said before, there would be more code listings than text!

The UP and DOWN cmdButtons will move the items in the list er, UP or ummmm DOWN.

The preview button will then strip all of the prefixes from the LIST and add prefixes in alphabetic order
starting at A_ and carrying on from there. When I’m happy, the OK button will change the sub headers
in the actual MODULE to reflect the list. This puts items I want at the top of the (hissssss) macros menu.
Easy peasy.

If you want the form/form code or anything I’ve referred to just email me. It’s free. The full monty.
Welllll, you could make a donation. Hehehe.

Here’s th picture of my mumblemumble menu again.

 Page 168/ 324

17 My mumblemumble menu

 Page 169/ 324

And a pic of my loaded userform.

18 My Arrange macros menu UserForm

 Page 170/ 324

Time out!

One of the reasons some code isn’t here, is that some procedures and modules are very big. Lotsa lines.
Another is that I expect that people reading this to be familiar with the VBE and able to create forms and
so on. Yet another reason harks back to something I said in the disclaimer and why I only posted update
code for cWhereAreWe rather than the whole initialization sub. I don’t want this to just be filled with
code listings.

Although this is mostly about code for the VBE, a GREAT deal is editing and massaging lines of code.
That’s mostly string functions: Left$, Right$, Mid$, Split, and so on. If you need help doing that, I’m quite
happy to oblige. Really. I’m on several well-known web sites/forums, just get in touch, and you can always
email. But that’s not doing things in the VBE. It’s editing strings.

Yet another reason is I’m trying to tell a story. I do this but I need to do this and oh, it would be good if
this happened as well and while we’re at it why don’t we…

I’m sure you know what I’m getting at.

Aside: I use the "old" form of string functions like Left$ Right$ and Mid$, adding a dollar sign at the end.
They’re still valid and what’s more return strings! Left Right and Mid return variants of type string. Just

one of my little quirks. I think VBS is deranged in using variants for everything! You can do a lot with
VBS though so don’t dismiss it! Maaaaybe more on that later. Probably not though. Incidentally, old

variable suffixes are still valid as well.

57 Ancient variable suffixes

% Integer Dim L%

& Long Dim M&

@ Decimal Const W@ = 37.5

! Single Dim Q!

Double Dim X#

$ String Dim V$ = "Secret"

There are a number of conversion functions from one variable type to another in VBA. The one that I’ve
found that I use the most so far though, is Cstr, to convert a number to a string. Purely because I use
string arrays a lot. VBA actually does a lot of conversions in the background that not many people realise.

It’s fairly generally accepted, though AFAIK not proven unequivicably for instance, that internally, VBA
doesn’t use integer, and there is an internal conversion to long, while remembering the original definition,
so it can check for integer limits. That’s why I now use long in all of my code. Google is your friend.

 Page 171/ 324

 Page 172/ 324

Try this. Add a module and insert:

58 VBA Converting example

Option Explicit

Sub subtestVariables()

Dim slS As String

Dim lnglL As Long

Dim slSArray(3) As String
Dim lnglLArray(1) As Long

slS = "test"
lnglL = 20
Debug.Print slS & " " & lnglL

slS = 14
Debug.Print slS + lnglL

slSArray(0) = slS & " " & lnglL
slSArray(1) = lnglL
slSArray(2) = lnglL + slS

Debug.Print VarType(slSArray(0))

Debug.Print VarType(slSArray(1))
Debug.Print VarType(slSArray(2))
Debug.Print slS + "12"

Debug.Print lnglL + "12"

lnglLArray(0) = slS

Debug.Print VarType(lnglLArray(0))

slS = "12"
lnglLArray(1) = slS

 Page 173/ 324

Debug.Print VarType(lnglLArray(0))

Debug.Print VarType(lnglLArray(1))

'

End Sub

The above will run without any compile or runtime errors even though there are mixed variable types
without any explicit conversions.

A lot of people would convert everything to a string for example for a debug.print. But aha! VBA is being
clever!

It’s up to you wether you wanmt VBA to do that or to use explicit conversion statements. I’m in two
minds. Most of the strings you are going to display will be for debugging purposes and so will, I hope, be
deleted later. Possibly using a routine we’ve shown here. Hehehe. So it could be a Q&D. OTOH you may
just want to get into a habit and be consistent. Your choice. But! I urge you not to get obsessive about
it!

 Page 174/ 324

Dims Bottom

Well I thought it was funny.

When you are building a procedure and then compiling or running, you WILL get the dreaded:

19 Variable not defined

This is a compile error and so not trappable at runtime. One way of coping with this is to manually, or
womanually as the case might be, insert the variable into the Dim list at the top of the proc. You do have
all of your Dims at the top of the procedure, don’t you? If not use subccSplitAllDims to move them there!

So you dutifully hit the OK button, press CtrlC, scroll up to the bottom of the Dims, Paste as a Dim with
maybe some editing, and possibly scroll all the way back down to where you were. Tiresome if you have
a large procedure with lotsa new variables.

We can do a little bit better than that. Never mind google… Bookmarks are your friends!

We can get the selection. We can test it. We can go to a line. We can insert lines. Cool! In fact, we
already "return" what we need from cWhereAreWe!

Let’s Go!

59 subccInsertSingleDim

Option Explicit

Sub subccInsertSingleDim()
' NOT BATCH.

 Page 175/ 324

' NO REPORT.

' NO END MESSAGE.
'

' Copy the current selection.

' Try and guess the variable type.
' Go to Bottom of Dims.

' Insert a new Dim.
'

Dim vbcplCodePane As VBIDE.CodePane

Dim clWhereAreWe As cWhereAreWe

Dim lnglLastDimLinePlus1 As Long
Dim lnglCurrentModuleLineNum As Long

Dim slSelection As String
Dim slSelectionArray() As String
Dim slVar As String

Dim vbcmlCodeModule As VBIDE.CodeModule
Dim slVarType As String
Dim slLine As String

Set clWhereAreWe = New cWhereAreWe

Set vbcplCodePane = clWhereAreWe.CodePane
Set vbcmlCodeModule = vbcplCodePane.CodeModule

slSelection = clWhereAreWe.Selection

slSelectionArray = Split(slSelection, " ")
slSelectionArray = Split(slSelectionArray(0), "(")

slVar = slSelectionArray(0)
slVarType = fncGuessVarType(slVar)
slLine = "Dim " & slVar & " As " & slVarType

lnglLastDimLinePlus1 = clWhereAreWe.LastDimLinePlus1
lnglCurrentModuleLineNum = clWhereAreWe.CurrentModuleLineNum

vbcplCodePane.SetSelection lnglLastDimLinePlus1, 1, lnglLastDimLinePlus1, 1

 Page 176/ 324

DoEvents

vbcmlCodeModule.InsertLines lnglLastDimLinePlus1, slLine

'

End Sub

So we get the variable not defined message and press OK and Reset. Our problem variable is still
highlighted. We run our procedure and voila! We have a new Dim and we can run or compile again. Note
that if we have a naming convention then fncGuessVarType will set the correct er, var type. You could
even put this on a button in a toolbar!

 Page 177/ 324

Building A Compile Report and Multithreading

Er… Normally, the above is a two staged process with you sitting behind the wheel as it were. The compile
stops, we press return = OK, press reset, correct things and rerun our procedure.

We can go a bit further by being a bit crafty wafty.

We know we can run an item from the VBE menus. Oh look! There’s Compile under the debug menu.

The below code will report the module name, the line number in the module, the whole line, and the
selection on the line that the compiler is objecting to. Then it will comment out the line. When the code
is finished the Ontime statement will take effect and the process will start again. Because we’ve

commented out a compile error, the NEXT compile error will be highlighted.

We do need though, to be careful that we don’t change the code of the procedure we are running or any
code that we depend upon within that procedure. In this case cWhereAreWe. Remember remember!

However! Without multithreading we can’t press the OK button programmatically and we can’t get the
compile error message.

We can easily start a new instance of an application with Shell. The problem comes with starting up any
procedure in it. If we do that from within the application we started the new instance from, using
Application.Run, then the calling application will wait till the the called procedure has ended. This is called

synchronous processing. We don’t want that because the process will stop and wait forever. We want

asynchronous processing, where the two programs are running independently. Effectively,
multithreading.

VBA is inherently a single thread environment but there are a few ways, that I’m aware of, to "do"
multithreading.

1. Use the API call CreateThread.
Every attempt I’ve made to try and implement this has failed and the application has crashed. Maybe
someone else can get it working and let me know how they did it please.

2. Start another instance of a possibly DIFFERENT application and run a procedure in that instance to
start another instance of our application and run code in it. The usual application used is VBS. It’s
easy and quick, though the code building code can get a bit complex.

3. Use a completely different programming language that does multithreading like C# C++.
4. Shell a new instance of the current application and run code to add code to the new instance and then

run that code.
5. Shell a new instance of the current application to open a file with code in it already, and run code

from the new files Open event. Open workbook/doc/presentation/database procedure and so on.

 Page 178/ 324

Now while we can be pretty sure VBS exists in our environment, and is useable on most computers, we
can pre write code in a file and run it. An alternative is to create VBS code "on the fly" save it and run it.
This later is in fact what a lot of people do in VBA. Check the appendices.

We know that everything runs in its own space. We can call this a window. We know there are a number
of windows open. We can see them. At least one is a dialog with an OK button. Here it is again.

Figure 20 Variable not defined

If we had information about open windows, we could maybe manipulate or at least get information from
that window.

The ONLY way to get a COMPLETE list of open windows is using API calls. VBS doesn’t do API calls. We
could wrap the calls up in a COM object and use that in VBS but that would involve using a different
language that does that sort of thing like C++ or C# or VB from VS for example.

We have NO idea what programs are on the computer so can’t write anything that isn’t in an application
we would expect. We could expect Powershell. The Command window is another. Powershell and the

command window command "Tasklist" do not report ALL windows. Same I think goes for VBS. There
is one application though that we totally know exists. The one we’re in.

We’re going to use the last method. Run pre-written code built in the same application we’re in and run
it from the open event. For this I’m using Word… no good reason to do so… I just made a choice. There
is no application specific code so it should run if imported to other applications as well. Using pre-written
code is being lazy. But it means we don’t have to build code in our code to create code with all of the
single and double quotation marks and so on. But don’t forget that is possible. In that instance we would
run a single item and wouldn’t depend on a separate file existing

 Page 179/ 324

Eventually you may want to do that, or perhaps export a module from the parent and import it to the new
child instance, close it and run it again. The code could be built "inline" or actually come from anywhere.
Maybe an exported .BAS file. Hmmmmm, didn’t we talk about saving things in the registry a little while
ago?

And talking about the registry. When I started this, I wanted to use the clipboard to pass messages and
information back and forth between the calling application and the shelled child application. Everywhere
has a clipboard right?

There’s a bug. For some reason when retrieving the clipboard contents you get "??". This is documented
and there is a bunch of API code to get around it, originally, I think from MSDN. Quite a bit in fact, and
for that reason, I dumped it and decided to use the ummmm, registry. I’m not 100% happy with that for
some reason. I don’t know why, just makes me twitchy. But I went with it and it worked. However, you
do it, there must be a means of passing info between the two open instances of the application. Very
specifically, the error message text from the compile error window and a done/finished message.

There are some interesting things going on here between the two proggies as you’ll see.

Here’s the relevant Main procedure code. It’s not all that much so I’m going to show the whole module.
There are other modules in the project some of which I’ve deliberately left in to generate a know number
of errors of a known type. Testin’ y’know.

This is RAW code with all the pimples so be prepared!

You’ll note that there’s a LOT of debugging code printing to a file called Log.TXT and that all of these lines

have " ‘ debug." at the end of the line. The child debug code instance prints to the SAME file. In this way
you can trace through what is happening and when as events occur in either/both programs. This needs
the subLog procedure in both instances and addressing the same Log.TXT file. All of these can be deleted.
More on that later.

Anyway here’s the module. Remember this is the MAIN procedure code instantiating the child. I’m not
skimping here. I’ve highlited/coloured in some parts/lines.

We are looking for compile errors. When you use this code, you must FIRST make sure there are NO
COMPILE ERRORS in this module and in the cWhereAreWe class! Remember Remember! Don’t do it
to yourself.

Walkies!

Option Explicit

Private Declare Sub Sleep _
 Lib "kernel32" _

 Page 180/ 324

 (ByVal dwMilliseconds As Long)

Public Enum ASSOCSTR
 ASSOCSTR_COMMAND = 1

 ASSOCSTR_EXECUTABLE

 ASSOCSTR_FRIENDLYDOCNAME
 ASSOCSTR_FRIENDLYAPPNAME

 ASSOCSTR_NOOPEN
 ASSOCSTR_SHELLNEWVALUE

 ASSOCSTR_DDECOMMAND

 ASSOCSTR_DDEIFEXEC

 ASSOCSTR_DDEAPPLICATION
 ASSOCSTR_DDETOPIC
 ASSOCSTR_INFOTIP

 ASSOCSTR_QUICKTIP

 ASSOCSTR_TILEINFO
 ASSOCSTR_CONTENTTYPE
 ASSOCSTR_DEFAULTICON
 ASSOCSTR_SHELLEXTENSION
 ASSOCSTR_MAX
End Enum

Public Enum ASSOCF

 ASSOCF_INIT_NOREMAPCLSID = &H1
 ASSOCF_INIT_BYEXENAME = &H2
 ASSOCF_OPEN_BYEXENAME = &H2
 ASSOCF_INIT_DEFAULTTOSTAR = &H4

 ASSOCF_INIT_DEFAULTTOFOLDER = &H8
 ASSOCF_NOUSERSETTINGS = &H10

 ASSOCF_NOTRUNCATE = &H20
 ASSOCF_VERIFY = &H40
 ASSOCF_REMAPRUNDLL = &H80
 ASSOCF_NOFIXUPS = &H100
 ASSOCF_IGNOREBASECLASS = &H200
End Enum

 Page 181/ 324

Private Const GW_CHILD = 5

Private Const GW_HWNDNEXT = 2

Private Declare Function GetDesktopWindow Lib "User32" () As Long

Private Declare Function GetWindow Lib "User32" (ByVal hwnd As Long, ByVal _
 wCmd As Long) As Long

Private Declare Function GetWindowText Lib "User32" Alias "GetWindowTextA" _

 (ByVal hwnd As Long, ByVal lpString As String, ByVal cch As Long) As Long

Private Type GUID
 lData1 As Long

 iData2 As Integer

 iData3 As Integer
 aBData4(0 To 7) As Byte

End Type

Public Const MAX_PATH = 260

Private Declare Function FindWindowEx Lib "User32" _
Alias "FindWindowExA" _

(ByVal hWnd1 As Long, _
ByVal hWnd2 As Long, _
ByVal lpsz1 As String, _
ByVal lpsz2 As String) As Long

Private Declare Sub AccessibleObjectFromWindow Lib "OLEACC.DLL" _
(ByVal hwnd As Long, _
ByVal dwId As Long, _
riid As GUID, _
ppvObject As Any)

Private Const OBJID_NATIVEOM = &HFFFFFFF0

Private Const INFINITE = &HFFFFFFFF
Private Declare Function WaitForSingleObject Lib "kernel32" (ByVal hHandle As Long,

ByVal dwMilliseconds As Long) As Long

 Page 182/ 324

Private Declare Function CreateThread Lib "kernel32" (ByVal LpThreadAttributes As

Long, _

 ByVal DwStackSize As Long, _

 ByVal LpStartAddress As Long, _
 ByVal LpParameter As Long, _

 ByVal dwCreationFlags As Long, _
 ByRef LpThreadld As Long) As Long

Private Declare Function CloseHandle Lib "kernel32" (ByVal HANDLE As Long) As Long

Public Declare Function AssocQueryString Lib "shlwapi.dll" _

 Alias "AssocQueryStringA" (ByVal flags As ASSOCF, _
 ByVal STR As ASSOCSTR, _

 ByVal pszAssoc As String, _
 ByVal pszExtra As String, _

 ByVal pszOut As String, _

 ByRef pcchOut As Long) As Long

Public smFile As String

Sub subStartCompile()

SaveSetting "Mike&Lisa", "Compile", "Status", ""

This is the MAIN bit that runs subCompile
subCompile
'

End Sub
Sub subCompile()

Dim clWhereAreWe As cWhereAreWe
Dim lnglCurrentModuleLineNum As Long
Dim lnglErrNumber As Long
Dim lnglLastDimLinePlus1 As Long
Dim lnglN As Long
Dim lnglSanityCheck As Long
Dim slCommentString As String

 Page 183/ 324

Dim slCompileError As String

Dim slErrDescription As String
Dim slLine As String

Dim slReplaceLine As String

Dim slSelection As String
Dim slSelectionArray() As String

Dim slVar As String
Dim slVarType As String

Dim vbcmlCodeModule As VBIDE.CodeModule

Dim vbcplCodePane As VBIDE.CodePane

Dim slPrintLine As String
Dim slTextFile As String
Dim lnglAnswer As Long

Dim slStatus As String

Dim slMessage As String

This is deliberately using Chr() because when we comment out the "‘@@ " we don’t want to

comment this out as well!

slCommentString = Chr(39) & Chr(64) & Chr(64) & Chr(32)
slTextFile = "Compile.txt"

' subLog "Compile get message" ' debug.

Has the child sent a Done message?

' Do this BEFORE starting a new copy.
slStatus = fncGetStatus()

' subLog "Compile message >" & slStatus & "<" ' debug.

If slStatus = "Done" Then

 slStatus = "Done From Main from Child."
 MsgBox slStatus
 Exit Sub
End If

 Page 184/ 324

Start the other "process/thread" before we compile. The other process will loop for a bit looking for

the compile error window. If it doesn't find it it will say so in the status and stop.

' Here's where we need info and have to press the OK button.

' subLog "Compile Starting Child" ' debug.

subStartChildApplication

' subLog "Compile Child started" ' debug.

There are TWO tests here. One for the runtime error and one to see if the Compile option is greyed

out.
' Right. It looks as though If there is a succesfull complie then

' the .Execute fails with an -2147467259 error.

' subLog "Compile compile" ' debug.

This is where we do the compile! Note we look for the faceid rather than…

Application.VBE.CommandBars("Menu Bar") _

 .Controls("Debug").Controls("Compile Project").Execute

This is because different applications have different text for "Project". Excel and Powerpoint for

example say "Compile VBAProject" and to avoid different language pecadilloes. This is in line with

the Project naming schemes.

On Error Resume Next
Application.VBE.CommandBars.FindControl(ID:=578).Execute
lnglErrNumber = Err.Number
On Error GoTo 0

If there is a compile error… Variable not defined or something, then we are now sitting there waiting

for the OK button to be pressed. If the compile completed because of no errors here’s where we

check. There could be two possibilities. Either a runtime error -2147467259 or the Compile option is

greyed out/disabled.
Select Case lnglErrNumber
Case 0
Case -2147467259

 ' subLog "Compile Done -2147467259." ' debug.

 Page 185/ 324

 slStatus = "Done -2147467259."
 subSendStatus slStatus

 MsgBox slStatus

 Exit Sub

Case Else

Leaving a Stop in is VERY BAD programming practice. I’ve done this to catch any error numbers as a

just in case thing and also this is a learning situation. Replace this with whatever you want as error

reporting and then exit sub if you like.

 Stop
End Select

' Catch up.
DoEvents

' Just Checking.
If Application.VBE.CommandBars("Menu Bar") _

 .Controls("Debug").Controls("Compile Project").Enabled = False Then

 slStatus = "Done Enabled = False."

 ' subLog "Compile Done Enabled = False." ' debug.

 subSendStatus slStatus

 MsgBox slStatus
 Exit Sub

End If

' subLog "Compile After Compile and button pressed" ' debug.

Meanwhile… the CHILD instance has been waiting for the dialog window to show up. When it does,

the CHILD will pick up the compile error and press OK. This code will carry on from here. Normally

when pressing OK the reason for the error is "reported" in the dialog window which disappears and

the problem is highlighted on the line. This is no different. We have a line with an error highlighted

 Page 186/ 324

in the codepane. We use cWhereAreWe to pick up the information we need. BUT! We don’t have

the compile error message. That’s gone away with the dialog window.

' This won't happen until we've pressed OK.

Set clWhereAreWe = New cWhereAreWe
Set vbcmlCodeModule = clWhereAreWe.CodeModule

lnglCurrentModuleLineNum = clWhereAreWe.CurrentModuleLineNum

Sleep 1000

' Get the compile message text.

' subLog "Compile Get Status/compile error" ' debug.

Having said we don’t have the compile error message, the CHILD instance will have picked it up and

sent it to the registry just before it pressed OK. Go and get it.
slCompileError = fncGetStatus()

' subLog "Compile Got status/compile error >" & slCompileError & "<" ' debug.

slPrintLine = Now() & "/" & lnglCurrentModuleLineNum _
 & "/" _
 & clWhereAreWe.ModuleName _
 & "/" _

 & clWhereAreWe.CurrentLineText _

 & "/" _
 & clWhereAreWe.Selection _
 & "/" _
 & slCompileError _

 & "<"

We don’t really need both but what the hell.

Debug.Print slPrintLine
Open slTextFile For Append As #1
Print #1, slPrintLine
Close #1

' subLog "compile printline >" & slPrintLine & "<" ' debug.

 Page 187/ 324

Important bit here. Comment out the line the error is on! Without this we won’t get to the

next compile error if there is one.

' Replace "bad" line".
' Don't do it to ourself!

Select Case clWhereAreWe.ModuleName

Case "mCompile", "cWhereAreWe"
 MsgBox "There is a compile error in this module or cWhereAreWe."

 Stop

Case Else

Something to think about here. We have the compile message. If it’s "Duplicate declaration in

current scope"… We may choose to just delete the line. If it’s "Variable not defined"… well we’ve

built a procedure to fix that haven’t we!

 slReplaceLine = slCommentString & clWhereAreWe.CurrentLineText

' subLog "compile replace line /" & lnglCurrentModuleLineNum & "/" & slReplaceLine

' debug.

MAJOR PROBLEM: If the error is on an If line, say, maybe testing the value of an

undefined variable, the If line will be commented out, and the End If and any

ElseIf lines will then come up as a compile error as well. This is something to be

aware of when looking at the report or immediate window. Same for Select and

Do While and Loop Until and With.

 vbcmlCodeModule.ReplaceLine lnglCurrentModuleLineNum, slReplaceLine

This is just icing. Bookmark the line so we can get to it quickly.
Application.VBE.CommandBars("Menu Bar") _

 .Controls("Edit").Controls("Bookmarks").Controls("Toggle BookMark").Execute

 ' Start me again in a bit.

' subLog "compile Ontime " & Now() ' debug.

 Page 188/ 324

The comment in the code above says it all.

 Application.OnTime Now() + TimeValue("00:00:4"), "subCompile"

End Select

' subLog "compile End" ' debug.

'

End Sub

Sub subStartChildApplication()

Dim olFS As FileSystemObject
Dim slEXEName As String

Dim slFileName As String
Dim slExt As String
Dim olObj As Object
Dim slPath As String

Dim olChildApplication As Object

Dim slDocName As String

Dim slApplicationName As String
Dim slChildFileName As String
Dim lnglErrNumber As Long
Dim slProjectCaption As String

Set olFS = CreateObject("Scripting.FileSystemObject")

slFileName = Application.VBE.ActiveVBProject.FileName
slExt = "." & olFS.GetExtensionName(slFileName)
slPath = olFS.GetParentFolderName(slFileName)

This is an interim HARD CODED solution. Eventually you’ll want to export a module from here and

import it to the new instance and then run the procedure in that instance. Maybe you’ll do that and

then close the file and reopen it so the open event triggers.

At the moment the "other" file is of the same application as this and in the same folder. This might

end up as Insert a module and copy and paste rather than import. Dunno.

 Page 189/ 324

In all cases, to maintain asynchronicity, the call to subGetButtonInfo CANNOT be started from here.

It MUST be started either from a VBS file a batch file or whatever or, as it is here, put into the open

event of the CHILD.

slApplicationName = Application.Name

Select Case slApplicationName
Case "Microsoft Word"

 slDocName = "doc2b.docm"

 slProjectCaption = "Project"
Case "Microsoft Excel"

 slProjectCaption = "VBAProject"
Case "Microsoft Powerpoint"

Case "Microsoft Outlook"
Case "Microsoft Access"

Case "Microsoft Project"
Case Else
End Select

slChildFileName = slPath & "\" & slDocName

Check if the file is open already.
On Error Resume Next
Open slChildFileName For Binary Access Read Write Lock Read Write As #1

lnglErrNumber = Err.Number

Close #1
On Error GoTo 0

Select Case lnglErrNumber
Case 0

 Debug.Print "Opening " & slChildFileName

If the file isn’t open then shell a new instance of it using this applications EXE.
 Shell fncGetAssociatedEXE(slExt) & " " & slDocName, vbNormalFocus
 Debug.Print slChildFileName; " Open"
Case 70
 ' File is open.
Case Else
End Select

 Page 190/ 324

DoEvents

'

End Sub

Public Function fncGetAssociatedEXE(spExtension As String) As String

Dim lnglReturn As Long
Dim slResult As String
Dim lnglPCCHOut As Long

slResult = String$(MAX_PATH, 0)

lnglPCCHOut = Len(slResult)

lnglReturn = AssocQueryString(_

 0, _

 ASSOCSTR_EXECUTABLE, _
 spExtension, _

 "open", _
 slResult, _
 lnglPCCHOut)
If lnglReturn = 0 Then

 ' AssocQueryString succeeded.
 slResult = fncTrimNull(slResult)

 fncGetAssociatedEXE = slResult

End If

'

End Function
Private Function fncTrimNull(spToTrim As String) As String

Dim lnglChrPos As Long

 Page 191/ 324

lnglChrPos = InStr(spToTrim, Chr(0))

If lnglChrPos <> 0 Then
 fncTrimNull = Trim$(Left$(spToTrim, lnglChrPos - 1))

Else

 fncTrimNull = Trim$(spToTrim)
End If

'

End Function

Function fncGetStatus()

Dim slStatus As String

slStatus = GetSetting("Mike&Lisa", "Compile", "Status") ' [,Default])
DoEvents

The Done message may contain extra information. We only want the Done bit.

If Left$(slStatus, Len("Done")) = "Done" Then
 slStatus = "Done"
End If

fncGetStatus = slStatus

'

End Function
Sub subSendStatus(_
 spStatus As String _
)

Dim slStatus As String

SaveSetting "Mike&Lisa", "Compile", "Status", spStatus

'

End Sub

 Page 192/ 324

Sub subLog(_

 spLogMessage As String _
)

Open "Log.txt" For Append As #1
Print #1, spLogMessage

Close #1

'

End Sub

Here’s one we prepared earlier. Hehehe. Old joke.

Here’s the prewritten code module with the procedure executed by the open event in the CHILD
process. As a total aside… The declarations are formatted with ^^^^

Option Explicit

Private Declare Sub Sleep _
 Lib "kernel32" _

 (ByVal dwMilliseconds As Long)
Private Declare Function FindWindow _
 Lib "User32" _

 Alias "FindWindowA" _

 (_
 ByVal lpClassName As String, _
 ByVal lpWindowName As String _

) _
 As Long
Private Declare Function GetWindow _
 Lib "User32" _
 (_
 ByVal hwnd As Long, _
 ByVal wCmd As Long _
) _

 Page 193/ 324

 As Long

Private Declare Function SetForegroundWindow _
 Lib "user32.dll" _

 (_

 ByVal hwnd As Long _
) _

 As Long
Private Declare Function SetFocusAPI _

 Lib "User32" _

 Alias "SetFocus" _

 (_
 ByVal hwnd As Long _
) _

 As Long

Private Declare Function SendMessage _
 Lib "user32.dll" _
 Alias "SendMessageW" _
 (_
 ByVal hwnd As Long, _
 ByVal uMsg As Long, _

 ByVal wParam As Long, _

 ByRef lParam As Any _
) _
 As Long

Private Declare Function GetWindowText _
 Lib "User32" _
 Alias "GetWindowTextA" _
 (_

 ByVal hwnd As Long, _
 ByVal lpString As String, _
 ByVal cch As Long _
) _
 As Long
Private Declare Function GlobalAlloc _
 Lib "kernel32" _
 (_
 ByVal wFlags As Long, _

 Page 194/ 324

 ByVal dwBytes As Long _

) _
 As Long

Private Declare Function GlobalLock _

 Lib "kernel32" _
 (_

 ByVal hMem As Long _
) _

 As Long

Private Declare Function lstrcpy _

 Lib "kernel32" _
 (_
 ByVal lpString1 As Any, _

 ByVal lpString2 As Any _

) _
 As Long
Private Declare Function GlobalUnlock _
 Lib "kernel32" _
 (_
 ByVal hMem As Long _

) _

 As Long
Private Declare Function OpenClipboard _
 Lib "User32" _

 (_
 ByVal hwnd As Long _
) _
 As Long

Private Declare Function EmptyClipboard _
 Lib "User32" _
 () _
 As Long
Private Declare Function SetClipboardData _
 Lib "User32" _
 (_
 ByVal wFormat As Long, _
 ByVal hMem As Long _

 Page 195/ 324

) _

 As Long
Private Declare Function CloseClipboard _

 Lib "User32" _

 () _
 As Long

Private Const GW_HWNDFIRST = 0
Private Const GW_HWNDLAST = 1

Private Const GW_HWNDNEXT = 2

Private Const GW_HWNDPREV = 3

Private Const GW_OWNER = 4
Private Const GW_CHILD = 5

Private Const GW_MAX = 5
Private Const BM_CLICK = &HF5
Private Const GHND = &H42

Private Const CF_TEXT = 1
Private Const MAXSIZE = 4096

Public Sub subGetButtonInfo()

Dim lnghlParentHwnd As Long

Dim slReturnBuffer As String * 128
Dim lnghlNextHwnd As Long
Dim lnghlChildHwnd As Long

Dim slParentCaption As String
Dim slGetCaption As String
Dim lnglCompStrLen As Long
Dim slCompileStr As String
Dim slOK As String
Dim lnglLenOK As Long
Dim lnghlOKHwnd As Long
Dim slCompileMessage As String
Dim lngChr As Long
Dim lnglN As Long
Dim slWindowText As String

 Page 196/ 324

Dim lnglTextLen As Long

Dim lnglLoopCount As Long
Dim slStatus As String

' We know the beginning of the Compile error message.
slCompileStr = "Compile error:"

lnglCompStrLen = Len(slCompileStr)

' We know OK button text.
slOK = "OK"
lnglLenOK = Len(slOK)

' We know the window caption.

slParentCaption = "Microsoft Visual Basic for Applications"

lnglLoopCount = 0

' subLog "2b starting loop" ' debug.

Loop looking for the Compile Error window. This will be a CHILD of the main VBE window

which is why we have to use API calls to find it.
Do

 ' Use the Registry to communicate a stop.
 DoEvents

' subLog "2b get status" ' debug.

Has the Main instance that shelled me, finished compiling?
 slStatus = fncGetStatus()

' subLog "2b status >" & slStatus & "<" ' debug.

 If slStatus = "Done" Then

' subLog "2b Exit sub" ' debug.

 Page 197/ 324

 Exit Sub

 End If

' subLog "2b Find window" ' debug.

Look for the Compile Error window.
 lnghlParentHwnd = FindWindow(vbNullString, slParentCaption)

 If lnghlParentHwnd <> 0 Then

' subLog "2b FOUND window" ' debug.

 slGetCaption = ""

Found it! The buttons are all windows as well so get the four CHILD windows and the

captions and the window handle of the OK button.

 ' Get the child windows.
 ' There are four of them.
 ' It doesn't seem worth it to create a loop for just four.

' subLog "2b Button 1" ' debug.

First window is a CHILD of the Compile error window.

 lnghlChildHwnd = GetWindow(lnghlParentHwnd, GW_CHILD)

 lnglTextLen = GetWindowText(lnghlChildHwnd, slReturnBuffer, 128)
 slGetCaption = Trim(slReturnBuffer)
 If Left$(slGetCaption, lnglLenOK) = slOK Then
 lnghlOKHwnd = lnghlChildHwnd

 ElseIf Left$(slGetCaption, lnglCompStrLen) = slCompileStr Then

 subSendStatus slGetCaption
 End If

' subLog "2b Button 1 caption >" & slGetCaption & "<" ' debug.

' subLog "2b Button 2" ' debug.

Now we get the NEXT window in the Z Order.
 lnghlNextHwnd = GetWindow(lnghlChildHwnd, GW_HWNDNEXT)

 Page 198/ 324

 lnglTextLen = GetWindowText(lnghlNextHwnd, slReturnBuffer, 128)

 slGetCaption = Trim(slReturnBuffer)
 If Left$(slGetCaption, lnglLenOK) = slOK Then

 lnghlOKHwnd = lnghlNextHwnd

 ElseIf Left$(slGetCaption, lnglCompStrLen) = slCompileStr Then
 subSendStatus slGetCaption

 End If

' subLog "2b Button 2 caption >" & slGetCaption & "<" ' debug.

' subLog "2b Button 3" ' debug.

And the NEXT.
 lnghlNextHwnd = GetWindow(lnghlNextHwnd, GW_HWNDNEXT)
 lnglTextLen = GetWindowText(lnghlNextHwnd, slReturnBuffer, 128)
 slGetCaption = Trim(slReturnBuffer)
 If Left$(slGetCaption, lnglLenOK) = slOK Then

 lnghlOKHwnd = lnghlNextHwnd
 ElseIf Left$(slGetCaption, lnglCompStrLen) = slCompileStr Then

 subSendStatus slGetCaption

 End If

' subLog "2b Button 3 caption >" & slGetCaption & "<" ' debug.

' subLog "2b Button 4" ' debug.

And the NEXT.
 lnghlNextHwnd = GetWindow(lnghlNextHwnd, GW_HWNDNEXT)
 lnglTextLen = GetWindowText(lnghlNextHwnd, slReturnBuffer, 128)
 slGetCaption = Trim(slReturnBuffer)
 If Left$(slGetCaption, lnglLenOK) = slOK Then
 lnghlOKHwnd = lnghlNextHwnd
 ElseIf Left$(slGetCaption, lnglCompStrLen) = slCompileStr Then
 subSendStatus slGetCaption
 End If

' subLog "2b Button 4 caption >" & slGetCaption & "<" ' debug.

 Page 199/ 324

 ' Press the OK button.

' subLog "2b PRESS BUTTON" ' debug.

Okay! We have the compile error message and we have the window handle of the OK

button. We’ve sent the compile error to the registry. Time to press that button with

SendMessage!

 SetForegroundWindow lnghlOKHwnd

 Call SetFocusAPI(lnghlOKHwnd)

 DoEvents
 Call SendMessage(lnghlOKHwnd, BM_CLICK, 0, 0)

 DoEvents

 Sleep 1000

 Else

Haven’t found the compile error window yet, hang around for a bit. Then try again. If this

needs to be increased you can add to the sleep time or the number of loops.

 Sleep 2000
 lnglLoopCount = lnglLoopCount + 1

' subLog "2b Looping to wait >" & lnglLoopCount & "<" ' debug.

Tired of waiting… 2 secs x 20… probably not going to happen. Get out!

 If lnglLoopCount > 20 Then

 subSendStatus "Done END From Child TIMEOUT"
 Exit Do
 End If
 End If

Loop

' subLog "2b END" ' debug.

 Page 200/ 324

'

End Sub

Sub subSendStatus(_
 spStatus As String, _

 Optional spCompileStr As String = "Compile error:" _
)

Dim slStatus As String

' Strip the Compile message because we only want the error.

Do
 If InStr(spStatus, " ") > 0 Then

 spStatus = Replace(spStatus, " ", " ")
 Else
 Exit Do

 End If
Loop
spStatus = Replace(spStatus, Chr(10), "")

spStatus = Replace(spStatus, Chr(0), "")
spStatus = Trim$(Replace(spStatus, spCompileStr, ""))

' subLog "2b Sending >" & spStatus & "<" ' debug.

SaveSetting "Mike&Lisa", "Compile", "Status", spStatus

'

End Sub
Function fncGetStatus()

Dim slStatus As String

slStatus = GetSetting("Mike&Lisa", "Compile", "Status") ' [,Default])

' subLog "2b Got status fncGetStatus >" & slStatus & "<" ' debug.

 Page 201/ 324

If Left$(slStatus, Len("Done")) = "Done" Then

 slStatus = "Done"
End If

fncGetStatus = slStatus
'

End Function

Sub subLog(_

 spLogMessage As String _

)

Open "Log.txt" For Append As #1
Print #1, spLogMessage

Close #1

'

End Sub

Other module code with known errors so we get a meaningful report to check out.

Option Explicit

Sub subtestCompile()

Dim lnglEndLine As Long
Dim lnglStartLine As Long
Dim lnglELine As Long
Dim lnglEndLine As Long
Dim lnglStartLine As Long
Dim lnglELine As Long
Dim lnglSLine As Long
Dim lnglECol As Long
Dim lnglSCol As Long

 Page 202/ 324

Dim slSelection As String

Dim lnglCurrentModuleLine As Long
Dim clWhereAreWe As cWhereAreWe

Dim lnglModuleEndLine As Long

Dim slLine As String
Dim slLineArray() As String

Dim slOLine As String
Dim vbcmlCodeModule As VBIDE.CodeModule

Dim vbcplCodePane As VBIDE.CodePane

Dim lnglCLine As Long

Dim slTrimLine As String

Set clWhereAreWe = New cWhereAreWe

lnglModuleEndLine = clWhereAreWe.ModuleProcEndLine

Set vbcmlCodeModule = clWhereAreWe.CodeModule
Set vbcplCodePane = clWhereAreWe.CodePane
vbcplCodePane.GetSelection lnglCurrentModuleLine, lnglSCol, lnglELine, lnglECol

' Is there a selection?
slLine = clWhereAreWe.CurrentLine
slSelection = clWhereAreWe.Selection

lnglSLine = clWhereAreWe.CurrentModuleLine
lnglSCol = clWhereAreWe.SCol
lnglELine = clWhereAreWe.ELine

lnglECol = clWhereAreWe.ECol

'

End Sub

Debug Reprise

And there may be another reprise even. Playing it by ear at the mo. Anyways, there are a lot of lines in
the previous section about compiling with " ‘ debug’" at the end. In another piece of code,

 Page 203/ 324

subccDeletDebugPrint, we deleted all code with debug.print. That can easily be altered to delete lines
with our tag, " ‘ debug." at the end.

Change….

slLookFor = "Debug.Print"
lnglLenLookFor = Len(slLookFor)

' Go Back UP the code to preserve line numbers.

lnglCurrentLine = lnglModuleEndLine

Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCurrentLine,

1))

 If Len(slLine) >= lnglLenLookFor Then
 If InStr(slLine, slLookFor) > 0 Then

 vbcmlCodeModule.DeleteLines _
 StartLine:=lnglCurrentLine, _
 count:=1

 End If

 End If

To….

slLookFor = ucase$("‘ Debug")

lnglLenLookFor = Len(slLookFor)

' Go Back UP the code to preserve line numbers.
lnglCurrentLine = lnglModuleEndLine
Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCurrentLine,

1))

 If Len(slLine) >= lnglLenLookFor Then

 Page 204/ 324

 If InStr(slLine, slLookFor) > 0 Then

 vbcmlCodeModule.DeleteLines _
 StartLine:=lnglCurrentLine, _

 count:=1

 End If

 End If

Maybe you feel " ‘ debug." Is too long to type. It could be anything. As long as it’s a unique at the end of
the line comment. " ‘]" is probably the quickest to type.

It’s possible even to make slLookFor a parameter! Something to think about to delete lines eh?

And this can be made module or project wide as we’ve done before… maybe as a parameter also!

In fact, we don’t need to delete them even. As long as we have that tag we can comment out the lines
instead. Maybe yet another parameter?

What we’re sometimes left with after that though is a bunch of code with multiple space lines. We can
do something about that!

We’ve looped through the lines of a procedure a few times now. The general code is…

Sub subLoopThroughProcLines()
'

Dim clWhereAreWe As cWhereAreWe
Dim lnglModuleEndLine As Long

Dim lnglModuleBodyLine As Long
Dim slCurrentLine As String
Dim slSelection As String
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim lnglSLine As Long
Dim lnglSCol As Long
Dim lnglELine As Long
Dim lnglECol As Long
Dim lnglCurrentLine As Long
Dim slLookFor As String
Dim lnglLenLookFor As Long

 Page 205/ 324

Dim slLine As String

Set clWhereAreWe = New cWhereAreWe

lnglModuleBodyLine = clWhereAreWe.ModuleProcBodyLine

lnglModuleEndLine = clWhereAreWe.ModuleProcEndLine
slSelection = clWhereAreWe.Selection

lnglSLine = clWhereAreWe.CurrentModuleLineNum

lnglSCol = clWhereAreWe.SCol
lnglELine = clWhereAreWe.ELine
lnglECol = clWhereAreWe.ECol

slCurrentLine = clWhereAreWe.CurrentLineText

Set vbcmlCodeModule = clWhereAreWe.CodeModule

lnglLenLookFor = Len(slLookFor)

' Go Back UP the code to preserve line numbers.

lnglCurrentLine = lnglModuleEndLine

Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCurrentLine, 1))

 lnglCurrentLine = lnglCurrentLine - 1
 If lnglCurrentLine <= lnglModuleBodyLine Then
 Exit Do

 End If

Loop

'

End Sub

To check for double blank lines and reduce them to single ones, we need to look at the next line as well.
Here’s the code.

 Page 206/ 324

Sub subDeleteDoubleBlankLines()

'

Dim clWhereAreWe As cWhereAreWe

Dim lnglCurrentLine As Long
Dim lnglECol As Long

Dim lnglELine As Long
Dim lnglEndProcLine As Long
Dim lnglLenLookFor As Long

Dim lnglModuleProcBodyLine As Long

Dim lnglModuleProcEndLine As Long

Dim lnglSCol As Long
Dim slNextLine As String

Dim lnglSLine As Long
Dim slCurrentLine As String
Dim slLine As String

Dim slLookFor As String
Dim slSelection As String
Dim vbclComponent As VBIDE.VBComponent
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbcplCodePane As VBIDE.CodePane
Dim vbplProject As VBIDE.VBProject

Set clWhereAreWe = New cWhereAreWe

' We don't use some of these but they're there if we
' need them for something else.
lnglModuleProcBodyLine = clWhereAreWe.ModuleProcBodyLine
lnglModuleProcEndLine = clWhereAreWe.ModuleProcEndLine
slSelection = clWhereAreWe.Selection
lnglSLine = clWhereAreWe.CurrentModuleLineNum
lnglSCol = clWhereAreWe.SCol
lnglELine = clWhereAreWe.ELine
lnglECol = clWhereAreWe.ECol
lnglEndProcLine = clWhereAreWe.EndProcLine

slCurrentLine = clWhereAreWe.CurrentLineText

 Page 207/ 324

Set vbplProject = clWhereAreWe.Project

Set vbcmlCodeModule = clWhereAreWe.CodeModule
Set vbcplCodePane = clWhereAreWe.CodePane

Set vbclComponent = clWhereAreWe.Component

' Go Back UP the code to preserve line numbers.

' We could just as easilly go down as well

' and we would have to look for:
' "End Sub", _
' "End Function", _

' "End Property"

' We can't look for just "End " because of:
' "End If"
' "End Select"
lnglCurrentLine = lnglEndProcLine

Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCurrentLine, 1))
 If LenB(Trim$(slLine)) = 0 Then
 slNextLine = vbcmlCodeModule.Lines(lnglCurrentLine + 1, 1)
 If LenB(Trim$(slNextLine)) = 0 Then

 vbcmlCodeModule.DeleteLines _
 StartLine:=lnglCurrentLine + 1, _
 count:=1

 End If
 End If

 lnglCurrentLine = lnglCurrentLine - 1
 If lnglCurrentLine <= lnglModuleProcBodyLine Then
 Exit Do
 End If
Loop

'

 Page 208/ 324

End Sub

We need to be careful when going from the end of a sub because it may be the last in the module and
we have to deal with pesky blank lines that are included in the subs line count.

We’ve had to do this at least once before. Repeating code, Hmmmm, maybe we can put it in
cWhereAreWe. And that’s what I did. The new class item is EndProcLine. It will be the same as

ModuleProcEndLine UNLESS the procedure is the last in the module.

 Page 209/ 324

Continuations

Very often we’ll want to to look at a line in the VBE and ask things about it. Is it a Declare line? Does it
have a comment on the end? Is it a Dim Line? Use your imagination. But we need the whole line.

When working with picking up lines from VBA procedures you’ll often come across lines that are
"continued" to the next one with the "_" continuation character. To process a line, you need to pick up
the whole doodad. A good example of this is how I personally declare Sub and Function definitions.

If we are in the middle of a set of continued lines we need to go back up and then start going down
again.

It’s a lot of bother just to pick up a line but worth it and in some cases essential.

The process is…

1. Table 1

Get a line = B
Get the line above it = A
Does A have the continuation chr at the end?
 Loop upwards getting lines until no more continuation chrs
 If the line has a continuation chr add it to the FRONT of B

If B has a continuation chr at the end loop down getting lines till no more continuation
chrs
If the line has a continuation chr add it to the END of B

Here’s the code…

2. Table 2

Function fncGetSingleLIne(_
 vbcmpCodeModule As VBIDE.CodeModule, _
 lngpCurrentModuleLineNum As Long)
' Join lines with continuation character up into
' a single line.
' Increment the given line number.
'

Dim ilCommentPos As Integer

 Page 210/ 324

Dim lnglCurrentLine As Long
Dim slJoinChr As String
Dim slGetLine As String
Dim slOldLine As String
Dim slNewLine As String
Dim blnlLoopUp As Boolean
Dim blnlLoopDown As Boolean

slJoinChr = " _"

slOldLine = Trim$(vbcmpCodeModule.Lines(lngpCurrentModuleLineNum, 1))
lnglCurrentLine = lngpCurrentModuleLineNum

blnlLoopDown = False
blnlLoopUp = False

If LenB(slOldLine) > 2 Then
 If Right$(slOldLine, 2) = slJoinChr Then
 blnlLoopDown = True
 End If
Else
 fncGetSingleLIne = slOldLine
 Exit Function
End If

slGetLine = Trim$(vbcmpCodeModule.Lines(lnglCurrentLine - 1, 1))

If LenB(slGetLine) > 2 Then
 If Right$(slGetLine, 2) = slJoinChr Then
 slNewLine = slOldLine & " " & slGetLine
 blnlLoopUp = True
 End If
Else
 fncGetSingleLIne = slOldLine
 Exit Function
End If

If blnlLoopDown = True Then

 Page 211/ 324

 Do
 lnglCurrentLine = lnglCurrentLine + 1
 slGetLine = Trim$(vbcmpCodeModule.Lines(lnglCurrentLine, 1))
 slNewLine = slNewLine & slGetLine

 If Right$(slNewLine, 2) <> slJoinChr Then
 Exit Do
 End If

 Loop

End If

If blnlLoopUp = True Then

 ' We already have the previous line.
 lnglCurrentLine = lngpCurrentModuleLineNum - 1
 Do
 lnglCurrentLine = lnglCurrentLine - 1
 slGetLine = vbcmpCodeModule.Lines(lnglCurrentLine, 1)
 If Right$(slGetLine, 2) <> slJoinChr Then
 Exit Do
 End If
 slNewLine = slGetLine & slNewLine

 Loop

End If

' Get rid of the continuation chrs.
slNewLine = Replace(slNewLine, slJoinChr, "")

' Set up any &s correctly.
slNewLine = Replace(slNewLine, "&", " & ")

' Get rid of lots of spaces.
slNewLine = fncRemoveDoubleSpaces(slNewLine)

 Page 212/ 324

lngpCurrentModuleLineNum = lngpCurrentModuleLineNum + 1

fncGetSingleLIne = slNewLine
'

End Function
Function fncRemoveDoubleSpaces(_
 spLine As String _
) _
 As String

If LenB(spLine) = 0 Then
 fncRemoveDoubleSpaces = ""
 Exit Function
End If

Do

 If InStr(spLine, " ") > 0 Then
 spLine = Replace(spLine, " ", " ")
 Else
 Exit Do
 End If

Loop

fncRemoveDoubleSpaces = spLine
'

End Function

fncGetSingleLIne, only returns a string. It doesn’t do anything with it. I’ve included a procedure to
remove double spaces as well.

 Page 213/ 324

I do Declare

While we’re on the subject of continuations, don’t you just get frustrated by all the different ways people
write API Declarations!? Sometimes they are on one single line meaning you need to scroll the window
to see the parameters. Other times they’re split into a totally arbitrary number of lines with totally
arbitrary indentation, if any!

To fix this we’ll:

• Grab All of the declaration lines

• Join each one up into single lines

• Separate them out and indent them "properly"

• Delete all of the old declaration lines

• Insert our new set of pretty lines

Wait a minute! Haven’t we just written a procedure to join up lines? That’s handy!

We’ll add someother functions as well.

• fncGetDeclarations
Of course!

• fncGetJoinedArray
This will take an array of lines with continuation characters and return an array of single lines.

At the moment, our function fncGetSingleLIne gets it’s lines directly from the code. Rather than alter that,
we’ll build another function based on that that works with an array so that we have both. Good eh?! I’m
going to rename fncGetSingleLIne to fncGetSingleLIneFromCode and call the new one
fncGetSingleLIneFromArray. Snappy huh!

Anyway… here’s the fncGetDeclarations function.

60 fncGetDeclarations

Function fncGetDeclarations()

Dim slDeclarations() As String
Dim vbplProject As VBIDE.VBProject
Dim vbclComponent As VBIDE.VBComponent
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbcplCodePane As VBIDE.CodePane
Dim slLines As String

 Page 214/ 324

Dim lnglCountOfDeclarationLines As Long

'Set vbplProject = Application.VBE.ActiveVBProject
Set vbcmlCodeModule = Application.VBE.ActiveCodePane.CodeModule
lnglCountOfDeclarationLines = vbcmlCodeModule.CountOfDeclarationLines

slLines = vbcmlCodeModule.Lines(1, lnglCountOfDeclarationLines)
slDeclarations = Split(slLines, vbCrLf)

fncGetDeclarations = slDeclarations()
'

End Function

And the fncGetJoinedArray function that calls fncGetSingleLIneFromArray.

61 fncGetJoinedArray

Function fncGetJoinedArray(spLines() As String)
' Return an array of joined lines.
' Skip comments and blank lines.
'
' I built this mostly to return joined
' declaration lines though it will
' work for any set of passed lines.
'

Dim lnglN As Integer
Dim lnglLineIndex As Integer
Dim lnglNumJoinedLines As Integer
Dim slJoinedLine As String
Dim slJoinedLinesArray() As String
Dim lnglUB As Integer

lnglLineIndex = 0
lnglNumJoinedLines = 0
lnglUB = UBound(spLines)

' First COUNT the lines for the array redim.

 Page 215/ 324

' Redim preserve Array(UBound(Array)+1) will work inside the
' loop but there seems to be quite an overhead for that.
Do
 slJoinedLine = _
 Trim$(fncJoinLines(spLines(), lnglLineIndex))
 If LenB(slJoinedLine) = 0 Then
 ElseIf Left$(slJoinedLine, 1) = "'" Then
 Else
 lnglNumJoinedLines = lnglNumJoinedLines + 1
 End If
 If lnglLineIndex >= lnglUB Then
 Exit Do
 End If
Loop

' Redim the EXACT array size.
ReDim slJoinedLinesArray(lnglNumJoinedLines)

' Populate our array.
lnglLineIndex = 0
lnglNumJoinedLines = 0
Do
 slJoinedLine = _
 Trim$(fncJoinLines(spLines(), lnglLineIndex))
 If slJoinedLine = "" Then
 ElseIf Left$(slJoinedLine, 1) = "'" Then
 Else
 slJoinedLinesArray(lnglNumJoinedLines) = slJoinedLine
 lnglNumJoinedLines = lnglNumJoinedLines + 1
 End If
 If lnglLineIndex >= lnglUB Then
 Exit Do
 End If
Loop

fncGetJoinedArray = slJoinedLinesArray()
'

End Function

 Page 216/ 324

Whenever possible always count the dimensions of the array you want to end up with and try NOT to use

Redim preserve Array(UBound(Array)+1)

in a loop.

As stated in the procedure comments, ReDim Preserve will incur an overhead. Think about what needs
to be done. Make another temporary array, save all of the information to it, redefine the original array
one element bigger, copy the saved information back. It’s not quite as simple as just adding more space
to the end of the original array because for one thing the array formats have to be preserved… string,
long, variant, object, whatever. Not so important in most cases maybe but think about having a couple of
thousand lines in a separate module defining "global" variables and defining API calls.

Won’t happen you say. HAH! Think about the number of pre defined variables Microsoft uses. All those
vb variables and so on. There’s a lot. There’s more than a lot.

Having said that, If you know, VERY DEFINATELY that the number of lines in the declarations is FIXED

at a small number then go right ahead. That will never EVER be updated. Right?

Hah!

Just a hint/reminder. Think year 2000. If you don’t know about that, google is your friend.

About this code… fncGetSingleLIne is a *general* function. Give it a set of lines and a line number and it
will look up from that line number and down from that line number to check for continuation characters,
and return a single line. We’ve also tried to take as many "scenarios" of code lines into consideration as
possible. Having said that and written the function, we know that we are going to look at all the
declaration lines and we know we’re going to start from the top. The coding would be much simpler just
going down line by line. We’ve also set things up to leave comments and commented continuations alone
and not join them up into a single line. So in a way we’ve made things difficult for ourselves. Here is a
simplified version of fncGetJoinedArray that simply loops down from the top to the bottom of the
declarations. No need to call fncGetSingleLIne at all! This version doesn’t count the lines first either but
uses the ReDim Preserve statement. We could use other methods to size an array. A common one is to
use a very big array and then count upwards till we hit a non blank item. Then we have the size of our
new array and can ReDim and populate it. Hang on… we did that in the main calling procedure
subSplitDeclarations. Cool!

fncGetJoinedArray but just loops down and uses ReDim.

62 fncGetJoinedArrayFromDeclarations

Function fncGetJoinedArrayFromDeclarations(_
 spLines() As String _
)

 Page 217/ 324

' Return an array of "joined" lines.
'
' This version just starts at the top and goes down.
' This uses Redim Preserve.
'

Dim lnglN As Long
Dim lnglInArrayLineIndex As Long
Dim lnglOutArrayLineIndex As Long
Dim slOutArray() As String
Dim lnglNumJoinedLines As Long
Dim slJoinedLine As String
Dim slJoinedLinesArray() As String
Dim slCommentTest As String
Dim lnglUBInArray As Long
Dim blnlComment As Boolean
Dim slTrimmedLine As String
Dim slJoinChr As String
Dim slOriginalLine As String
Dim blnlContinuation As Boolean

slJoinChr = " _"
lnglOutArrayLineIndex = -1
lnglNumJoinedLines = 0
lnglUBInArray = UBound(spLines)

For lnglInArrayLineIndex = 0 To lnglUBInArray
 Do
 slOriginalLine = spLines(lnglInArrayLineIndex)
 slTrimmedLine = Trim$(slOriginalLine)

 If Left$(slTrimmedLine, 1) = "'" Then
 lnglOutArrayLineIndex = lnglOutArrayLineIndex + 1
 ReDim Preserve slOutArray(lnglOutArrayLineIndex)
 slOutArray(lnglOutArrayLineIndex) = slOriginalLine
 blnlComment = True
 Exit Do
 End If

 Page 218/ 324

 If blnlComment = True Then

 If LenB(slTrimmedLine) > 2 Then
 If Right$(slTrimmedLine, 2) <> slJoinChr Then

 ' End of continuations in comments.
 ' Write the last one.
 lnglOutArrayLineIndex = lnglOutArrayLineIndex + 1
 ReDim Preserve slOutArray(lnglOutArrayLineIndex)
 slOutArray(lnglOutArrayLineIndex) = slOriginalLine
 blnlComment = False
 Exit Do

 Else

 ' Comment and continuation.
 ' Write line.
 lnglOutArrayLineIndex = lnglOutArrayLineIndex + 1
 ReDim Preserve slOutArray(lnglOutArrayLineIndex)
 slOutArray(lnglOutArrayLineIndex) = slOriginalLine
 blnlComment = False
 Exit Do

 End If

 Else

 ' End of continuations in comments.
 ' Write the last one.
 lnglOutArrayLineIndex = lnglOutArrayLineIndex + 1
 ReDim Preserve slOutArray(lnglOutArrayLineIndex)
 slOutArray(lnglOutArrayLineIndex) = slOriginalLine
 blnlComment = False
 Exit Do

 End If

 Else

 Page 219/ 324

 ' Not in Comments.

 If blnlContinuation = False Then
 If LenB(slTrimmedLine) > 2 Then
 If Right$(slTrimmedLine, 2) = slJoinChr Then

 ' First line of continuation.
 slJoinedLine = slTrimmedLine
 blnlContinuation = True
 Exit Do

 End If
 End If
 End If

 If blnlContinuation = True Then
 If LenB(slTrimmedLine) > 2 Then
 If Right$(slTrimmedLine, 2) <> slJoinChr Then

 ' End of continuations outside comments.
 ' Add to Line.
 ' Write the complete line.
 lnglOutArrayLineIndex = lnglOutArrayLineIndex + 1
 ReDim Preserve slOutArray(lnglOutArrayLineIndex)
 slJoinedLine = slJoinedLine & " " & slTrimmedLine
 slOutArray(lnglOutArrayLineIndex) = slJoinedLine
 blnlContinuation = False
 Exit Do

 Else

 ' In a continuation and this is a continuation as well.
 ' Add to Line.
 slJoinedLine = slJoinedLine & " " & slTrimmedLine

 End If

 Else

 Page 220/ 324

 ' End of continuations outside comments.
 ' Add to Line.
 ' Write the complete line.
 lnglOutArrayLineIndex = lnglOutArrayLineIndex + 1
 ReDim Preserve slOutArray(lnglOutArrayLineIndex)
 slJoinedLine = slJoinedLine & " " & slTrimmedLine
 slOutArray(lnglOutArrayLineIndex) = slJoinedLine
 blnlContinuation = False
 Exit Do

 End If

 Else

 ' Not a continued line.
 ' Write it away.
 lnglOutArrayLineIndex = lnglOutArrayLineIndex + 1
 ReDim Preserve slOutArray(lnglOutArrayLineIndex)
 slOutArray(lnglOutArrayLineIndex) = slOriginalLine
 blnlContinuation = False
 Exit Do

 End If
 End If

 Exit Do

 Loop

Next lnglInArrayLineIndex

fncGetJoinedArrayFromDeclarations = slOutArray()
' ***
End Function

 Page 221/ 324

Time Ladies and Gentlemen please!

In the last bit we talked about ReDim preserve having an overhead, and that counting items first to size
an array and then populating it is usually quicker.

How do we know?

We time it of course!

Timing procedures for any computer program in any computer is tricky. The normal way is to catch the

before and end times of running the procedure a lot of times and give an avearage. Even this is prone
to being misleading because of all the other stuff going on in a computer. Maybe a background process
is checking the internet just at the time you run a timing test. Perhaps the internet tries to connect to
you. It could be that an anti virus program decides to do a scan. There’s all those pesky svchost

processes. If you use google chrome there will be LOTS of instances of that chugging away. It’s
instructive to run a program like the free AutoRuns by Mark Russinovich that was bought by Microsoft.
Link in the appendices. The number of processes that run at startup is staggering! You just have to run
task manager and count the number of running processes… if you can! With so much going on it’s
hardly suprising that timing a single procedure in VBA may or may not give a true measure of the time it
takes to run. Hence doing it a zillion times, and even then you may not be sure. You need to take into
account the time your timing procedure runs as well. It could even be said that timing the same
processes on different computers is totally useless. Certainly, running timers on the same computer

gives more of a comparison measure than an exact running time.

You can try to give yourself an edge though by closing down the internet and zapping all the processes
you don’t need and stopping any virus/malware programs. Most people don’t bother.

However… it’s better than having no metrics at all!

The VBA Timer() function returns the number of seconds elapsed since midnight using a single-precision
floating point value. This is not a threaded control so may not be triggered at exactly the correct time.
Delays can be caused by other applications and or system processes.

Lots of people are of the opinion that the VBA functions, Timer() and Now() are adequate to time their
code. Timer() gets the number of milliseconds since midnight with a resolution of approximately 10
milliseconds. Now() has a resolution of approximately one second. Some people use the "tick count"
which is the number milliseconds that have elapsed since Windows was started.

There are a number of ways of getting a more precise time measurement. The timeGetTime API call
returns the number of milliseconds that have elapsed since Windows was started. The MSDN
GetSystemTimePreciseAsFileTime function retrieves the current system date and time with the highest
possible level of precision (<1us). The retrieved information is in Coordinated Universal Time (UTC)

 Page 222/ 324

format. The MSDN QueryPerformanceCounter function retrieves the current value of the performance
counter, which is a high resolution (<1us) time stamp.

MSDN and other sources, seem to agree that the most accurate is to use an API call combination of
QueryFrequency and QueryCounter. This gets the current value of the performance counter to <1µs.

I present in the appendices, a High Definition timer class that does that. It’s not by me. I got it from the
internet and as far as I know the original is by the people I list in the comments at the top of the class
code. Copy this to a class module and rename the module cHiResTimer. Remember the name of the
class module is important because that’s the name of the class.

So, we have a timer class, cHiResTimer. How do we use it?

The same as any other class! An example was our cWhereAreWe class and our cNameExample class.

3. High Definition timer class Example

‘ In an ordinary code module.

Sub subtestcHiResTimer()

Dim clHiResTimer as cHiResTimer

Set clHiResTimer = New cHiResTimer
clHiResTimer.Start

 ‘ Code.

 clHiResTimer.Stop

 Debug.Print clTimer.Elapsed

'

End Sub

I’m pretty confident that the timing class tackles most timing questions fairly well, albeit perhaps a mite
too accurately! I’ve used it with results consistent enough to draw conlusions about performance
bottlenecks that have enabled me to alter code to noticeably improve speed.

Just a reminder. We’re talking about a class to test and report how long a procedure or some code
takes to execute, so we can measure the speed of doing things one way or another way.

 Page 223/ 324

Where you put the code is dependent on wether you want to report exact timings with all of the snakes
and worms or wether you want to average over a large number of iterations. Sometime you have no
choice especially when talking about altering code with code.

 Page 224/ 324

Insert timing code

Inserting code is something we’ve done before. What we haven’t done is checked Dims for needed
definitions. Specifically, in this case…

Dim clHiResTimer as cHiResTimer

Collecting the Dims though is something we have done. Remember subInsertGetProperties? We
collected a set of Dims and inserted them altered for module level in the declarations. We don’t need to
do as much here. But! Having a procedure to return an array of Dims for a procedure may be useful in
its own right! Even better might be to put them into cWhereAreWe so we have them set up when we
instantiate that class. We also have an item returned from that class that tells us if the Dims are all
together, where they start and where they end.

So, here’s the code I added to cWhereAreWe to return the Dims and DimCount.

63 WhereAreWe Update for Dims Array and Dims Count

' Count All of the Dims.

lnglDimCount = 0
If lnglLastDimLinePlus1 = 0 Then

 lnglCLine = lnglModuleProcBodyLine
Else
 lnglCLine = lnglLastDimLinePlus1 - 1
End If

Do

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCLine, 1))
 If LenB(slLine) <> 0 Then

 slLineArray = Split(slLine, " ")
 Select Case slLineArray(0)
 Case "Dim", "Const", "Static"
 lnglDimCount = lnglDimCount + 1
 End Select
 End If

 lnglCLine = lnglCLine - 1

 Page 225/ 324

 If lnglCLine <= lnglLineAfterDefinitionPlus1 - 1 Then

 Exit Do
 End If

Loop

ReDim slDimsArray(lnglDimCount - 1)

' Populate the array.

If lnglLastDimLinePlus1 = 0 Then
 lnglCLine = lnglModuleProcBodyLine

Else

 lnglCLine = lnglLastDimLinePlus1 – 1
End If

lnglDimCount = -1
Do
 lnglDimCount = lnglDimCount + 1

 slLine = Trim$(vbcmlCodeModule.Lines(lnglCLine, 1))
 If LenB(slLine) <> 0 Then
 slLineArray = Split(slLine, " ")

 Select Case slLineArray(0)
 Case "Dim", "Const", "Static"
 slDimsArray(lnglDimCount) = slLine

 End Select
 End If

 lnglCLine = lnglCLine – 1

 If lnglCLine <= lnglLineAfterDefinitionPlus1 - 1 Then
 Exit Do
 End If

Loop

 Page 226/ 324

Along with adding the property procedures and the module level variables.

Now, where were we? Oh yes… We need to check for

Dim clHiResTimer as cHiResTimer

Now we have a list of Dims from cWhereAreWe, it becomes almost trivial!

The following code will check for that Dim line. If it’s there we can fairly safely assume that the line to
instantiate the class…

Set clWhereAreWe = New cWhereAreWe

… is there as well. But if we want to be doubly sure, we can always check for that too! We have all of
the lines of code in an array from cWhereAreWe! Just checking the Dims though is a teeny bit shorter.

After we are pretty sure those lines are in the procedure a line to start the timer is put above the line we
are on and one to stop the timer below the line we are on. Finally, we can insert a debug.print to tell us
the elapsed time. So, to insert timing at a line… maybe one that runs another procedure… we put our
cursor on it and run our subccInsertTimerAtLine routine.

Here is the code to just check the Dims. Do you see the assumption in the function?

64 fncLookThroughDims 1

Sub subtestfncLookThroughDims()
MsgBox fncLookThroughDims("Dim clHiResTimer As CHiResTimer")
' ***
End Sub
Function fncLookThroughDims(_
 spLookFor As String _
) _
 As Boolean

Dim clWhereAreWe As cWhereAreWe
Dim slDimsArray() As String
Dim lnglDimCount As Long
Dim lnglN As Long
Dim blnlFound As Boolean
Dim slLookFor As String
Dim slDimLine As String

Set clWhereAreWe = New cWhereAreWe

 Page 227/ 324

slDimsArray = clWhereAreWe.DimsArray
lnglDimCount = clWhereAreWe.DimCount

blnlFound = False
slLookFor = spLookFor
For lnglN = 0 To lnglDimCount - 1
 slDimLine = slDimsArray(lnglN)
 If slDimLine = slLookFor Then
 blnlFound = True
 Exit For
 End If
Next lnglN

fncLookThroughDims = blnlFound
' ***
End Function

Because you will probably run this from a procedure that has already instantiated cWhereAreWe, you
may chose to pass slDimsArray intead. And here’s how that would look.

65 fncLookThroughDims 2

Sub subtestfncLookThroughDims()

Dim clWhereAreWe As cWhereAreWe
Dim slDimsArray() As String
Dim lnglDimCount As Long

Set clWhereAreWe = New cWhereAreWe
slDimsArray = clWhereAreWe.DimsArray
lnglDimCount = clWhereAreWe.DimCount

MsgBox fncLookThroughDims(_
 "Dim clHiResTimer As CHiResTimer", _
 slDimsArray _
)

' ***
End Sub

 Page 228/ 324

Function fncLookThroughDims(_
 spLookFor As String, _
 spDimsArray() As String _
) _
 As Boolean

Dim lnglN As Long
Dim blnlFound As Boolean
Dim slLookFor As String
Dim slDimLine As String

blnlFound = False
slLookFor = spLookFor
For lnglN = 0 To lnglDimCount - 1
 slDimLine = spDimsArray(lnglN)
 If slDimLine = slLookFor Then
 blnlFound = True
 Exit For
 End If
Next lnglN

fncLookThroughDims = blnlFound
' ***
End Function

Annnnnnd, here’s the code to insert timing around a selection. This is very similar to the code to insert
Debug.Print around a line. Note that we append " ' Timer code" to our inserted lines at the end so we can
delete them when done. We could use another string. " ' inserted." maybe… " ' test" … " ' This line to be
deleted" … whatever.

The differences to subInsertSelectionDebug are:

• We look through the variables to check if we need to insert one

• We put code around a selection rather than a single line

• We insert an extra line to instantiate the class

Also note:

 Page 229/ 324

• We go backward UP the procedure when adding lines to avoid altering original line numbers

collected by cWhereAreWe.

• We insert code to loop 1000 times.

• There is a msgbox at the end telling us we’re “Done.”. This isn’t nesesarry but very useful so that

we aren’t sitting there waiting after the code has run. I do this in a lot of procedures.

66 subccInsertTimingCodeAroundSelection

You should be used to the subtest code at the top by now.

Sub a__subtestsubccInsertTimingCodeAroundSelection()
subccInsertTimingCodeAroundSelection 1000
' ***
End Sub
Sub subccInsertTimingCodeAroundSelection(_
 Optional lngpLoopCounter As Long = 1 _
)
' NOT BATCH.
' NO REPORT.
' NO END MESSAGE.
'
'
' Insert Timing Code Around the current line.
' Puts "' Timer code" at the end of the Inserted lines.
' D/Prints the module and procedure name and line
' number, and the DECIMAL elapsed time in milliseconds.
'
' The CHiResTimer class uses the APIs...
' QueryPerformanceFrequency
' QueryPerformanceCounter
'
' BASIC Code.
' Dim clTimer As CHiResTimer
' Set clTimer = New CHiResTimer
' clTimer.StartTimer
' clTimer.StopTimer
' Debug.Print clTimer.Elapsed
' Set clTimer = Nothing
'

 Page 230/ 324

' ### Be aware that timing code is tricky because
' of all the different things a computer is doing
' all the time as well as the temperature and the
' price of eggs.
' It's *very* unlikely that two runs will ever
' give the same/identical elapsed times.
' It's possible that you may want to perform
' the timing a number of times and average the
' result.
'

Dim blnlMessageFound As Boolean
Dim blnlTimerClassVar As Boolean
Dim clWhereAreWe As cWhereAreWe
Dim ilN As Integer
Dim lnglECol As Long
Dim lnglELine As Long
Dim lnglModuleEndLine As Long
Dim lnglModuleLine As Long
Dim lnglSCol As Long
Dim lnglSLine As Long
Dim slClassName As String
Dim slCurrentLine As String
Dim slDQ As String
Dim slEndOfLine As String
Dim slIndent As String
Dim slMessageVar As String
Dim slModuleName As String
Dim slProcedureName As String
Dim slSelection As String
Dim slTimerClassVar As String
Dim slVarArray() As String
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim lnglLastDimLinePlus1 As Long
Dim slSetClass As String
Dim slStartTimer As String
Dim slStopTimer As String
Dim slTimerToNothing As String
Dim slTimeElapsed As String

 Page 231/ 324

Dim lnglDimCount As Long
Dim slStartLoop As String
Dim slEndLoop As String
Dim slLoopCounterVar As String
Dim blnlLooopCountVar As Boolean

Set clWhereAreWe = New cWhereAreWe

lnglModuleLine = clWhereAreWe.ModuleProcBodyLine
lnglModuleEndLine = clWhereAreWe.ModuleProcEndLine
slModuleName = clWhereAreWe.ModuleName
slSelection = clWhereAreWe.Selection
lnglSLine = clWhereAreWe.CurrentModuleLineNum
lnglSCol = clWhereAreWe.SCol
lnglELine = clWhereAreWe.ELine + 1
lnglECol = clWhereAreWe.ECol
slCurrentLine = clWhereAreWe.CurrentLineText
slProcedureName = clWhereAreWe.ProcedureName
slIndent = clWhereAreWe.FirstIndent
lnglLastDimLinePlus1 = clWhereAreWe.LastDimLinePlus1
lnglDimCount = clWhereAreWe.DimCount

Set vbcmlCodeModule = clWhereAreWe.CodeModule

slDQ = Chr(34)
slEndOfLine = " ' Timer code"
slTimerClassVar = "clTimer"
slClassName = "CHiResTimer"
slLoopCounterVar = "lnglLoopCounter"

slSetClass = "Set " & slTimerClassVar _
 & " = New " _
 & slClassName _
 & slEndOfLine

slStartLoop = "For " & slLoopCounterVar & " = 1 to " & lngpLoopCounter _
 & slEndOfLine

slStartTimer = "clTimer.StartTimer" _

 Page 232/ 324

 & slEndOfLine

slEndLoop = "Next " & slLoopCounterVar _
 & slEndOfLine

slStopTimer = "clTimer.StopTimer" _
 & slEndOfLine

slTimeElapsed = "Debug.Print "
slTimeElapsed = slTimeElapsed _
 & slDQ & slModuleName & slDQ
slTimeElapsed = slTimeElapsed _
 & " & " & slDQ & "/" & slDQ
slTimeElapsed = slTimeElapsed _
 & " & " _
 & slDQ & slProcedureName & slDQ
slTimeElapsed = slTimeElapsed _
 & " & " & slDQ & "/" & slDQ
slTimeElapsed = slTimeElapsed _
 & " & " _
 & slDQ & CStr(lnglSLine) & slDQ
slTimeElapsed = slTimeElapsed _
 & " & " & slDQ & "/" & slDQ
slTimeElapsed = slTimeElapsed _
 & " & " _
 & slDQ & "Time elapswed :" & slDQ
slTimeElapsed = slTimeElapsed _
 & " & " _
 & "CStr(clTimer.Elapsed)"
slTimeElapsed = slTimeElapsed _
 & slEndOfLine

slTimerToNothing = "Set clTimer = Nothing" _
 & slEndOfLine

' ---
' Put the built lines into the code.

 Page 233/ 324

vbcmlCodeModule.InsertLines _
 Line:=lnglELine, _
 String:=slTimerToNothing

vbcmlCodeModule.InsertLines _
 Line:=lnglELine, _
 String:=slTimeElapsed

vbcmlCodeModule.InsertLines _
 Line:=lnglELine, _
 String:=slStopTimer

vbcmlCodeModule.InsertLines _
 Line:=lnglELine, _
 String:=slEndLoop

vbcmlCodeModule.InsertLines _
 Line:=lnglSLine, _
 String:=slStartLoop

vbcmlCodeModule.InsertLines _
 Line:=lnglSLine, _
 String:=slStartTimer

vbcmlCodeModule.InsertLines _
 Line:=lnglSLine, _
 String:=slSetClass

' Timer Code inserted.
' ---
' Check for variables.

blnlTimerClassVar = False
blnlLooopCountVar = False

' If there are no dims then we have to insert ours.
' Rather than use a function to see if the array is
' allocated, we can just check DimCount.

 Page 234/ 324

If lnglDimCount > 0 Then

 ' cWhereAreWe also passes a plain list of local variables.
 ' We could equally use fncLookThroughDims.
 slVarArray = clWhereAreWe.LocalVariablesArray

 For ilN = 0 To UBound(slVarArray)
 If slVarArray(ilN) = slTimerClassVar Then
 blnlTimerClassVar = True
 Exit For
 End If
 Next ilN

 For ilN = 0 To UBound(slVarArray)
 If slVarArray(ilN) = slLoopCounterVar Then
 blnlLooopCountVar = True
 Exit For
 End If
 Next ilN

End If

If Not blnlTimerClassVar Then
 vbcmlCodeModule.InsertLines _
 Line:=lnglLastDimLinePlus1, _
 String:= _
 "Dim " & slTimerClassVar & " As " & slClassName
End If

If Not blnlLooopCountVar Then
 vbcmlCodeModule.InsertLines _
 Line:=lnglLastDimLinePlus1, _
 String:= _
 "Dim " & slLoopCounterVar & " As Long" & slClassName
End If

' ***
End Sub

 Page 235/ 324

A Timer example

Hmmmmmm, Lets run some of what we’ve just done and see what happens.

We were talking way back about Redim Preserve having an overhead, so let’s check it out. To be

significant. we need to do it a lot though!

Here’s the test code without timing code.

67 Test ReDim code for Timing

Sub subtestRedim()
' This is to test the timing of redim preserve against counting
' and doing a single redim.
'
' It is hard coded to look at all the modules here and create an array
' of all the lines.
'
' Because it doesn't alter anything it's okay to look at this module as well.
' Remember, we're not doing anything with the lines, just populating an
' array of them.
'

Dim lnglTotalLineCount As Long
Dim lnglModuleLineCount As Long
Dim lnglModuleLineNumber As Long
Dim slLine As String
Dim slAllProjectLinesRedimPreserve() As String
Dim slAllProjectLinesCountFirst() As String
Dim vbplProject As VBIDE.VBProject
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbclComponent As VBIDE.VBComponent
Dim clTimer As CHiResTimer

Set vbplProject = Application.VBE.ActiveVBProject

' ---
' Redim Preserve.

 Page 236/ 324

lnglTotalLineCount = 0
For Each vbclComponent In vbplProject.VBComponents
 Set vbcmlCodeModule = vbclComponent.CodeModule
 With vbcmlCodeModule
 lnglModuleLineCount = 0
 Do
 lnglModuleLineCount = lnglModuleLineCount + 1
 lnglTotalLineCount = lnglTotalLineCount + 1
 If lnglModuleLineCount >= .CountOfLines Then
 Exit Do
 End If

 slLine = vbcmlCodeModule.Lines(lnglModuleLineCount, 1)
 ReDim Preserve slAllProjectLinesRedimPreserve(lnglTotalLineCount)
 slAllProjectLinesRedimPreserve(lnglTotalLineCount) = slLine
 Loop
 End With

Next vbclComponent

' ---
' Count First.

lnglTotalLineCount = 0
For Each vbclComponent In vbplProject.VBComponents
 Set vbcmlCodeModule = vbclComponent.CodeModule
 With vbcmlCodeModule
 lnglModuleLineCount = 0
 Do
 lnglModuleLineCount = lnglModuleLineCount + 1
 lnglTotalLineCount = lnglTotalLineCount + 1
 If lnglModuleLineCount >= .CountOfLines Then
 Exit Do
 End If
 Loop
 End With

 Page 237/ 324

Next vbclComponent

ReDim slAllProjectLinesCountFirst(lnglTotalLineCount)

lnglTotalLineCount = 0
For Each vbclComponent In vbplProject.VBComponents
 Set vbcmlCodeModule = vbclComponent.CodeModule
 With vbcmlCodeModule
 lnglModuleLineCount = 0
 Do
 lnglModuleLineCount = lnglModuleLineCount + 1
 lnglTotalLineCount = lnglTotalLineCount + 1
 slLine = vbcmlCodeModule.Lines(lnglModuleLineCount, 1)
 If lnglModuleLineCount >= .CountOfLines Then
 Exit Do
 End If
 slAllProjectLinesCountFirst(lnglTotalLineCount) = slLine
 Loop
 End With

Next vbclComponent

Stop
MsgBox "Done."
' ***
End Sub

Run it. The Stop at the end will allow you to look at slAllProjectLinesRedimPreserve and

slAllProjectLinesCountFirst in the watch window. The two arrays should be identical.

Now select each different section in turn and run our a__subtestsubccInsertTimingCodeAroundSelection.

Isn’t putting a__ at the front of procedures and having the macros (Hissssss) button on the toolbar useful!

You can delete the stop afterwards as well.

68 subtestRedim after adding Timer code

Sub subtestRedim()
' This is to test the timing of redim preserve against counting

 Page 238/ 324

' and doing a single redim.
'
' It is hard coded to look at all the modules here and create an array
' of all the lines.
'
' Because it doesn't alter anything it's okay to look at this module as well.
' Remember, we're not doing anything with the lines, just populating an
' array of them.
'

Dim lnglTotalLineCount As Long
Dim lnglModuleLineCount As Long
Dim lnglModuleLineNumber As Long
Dim slLine As String
Dim slAllProjectLinesRedimPreserve() As String
Dim slAllProjectLinesCountFirst() As String
Dim vbplProject As VBIDE.VBProject
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim vbclComponent As VBIDE.VBComponent
Dim lnglLoopCounter As Long
Dim clTimer As CHiResTimer

Set vbplProject = Application.VBE.ActiveVBProject

' ---
' Redim Preserve.

Set clTimer = New CHiResTimer ' Timer code
clTimer.StartTimer ' Timer code
For lnglLoopCounter = 1 To 1000 ' Timer code
ReDim slAllProjectLinesRedimPreserve(0)
lnglTotalLineCount = 0
For Each vbclComponent In vbplProject.VBComponents
 Set vbcmlCodeModule = vbclComponent.CodeModule
 With vbcmlCodeModule
 lnglModuleLineCount = 0
 Do
 lnglModuleLineCount = lnglModuleLineCount + 1
 lnglTotalLineCount = lnglTotalLineCount + 1

 Page 239/ 324

 If lnglModuleLineCount >= .CountOfLines Then
 Exit Do
 End If

 slLine = vbcmlCodeModule.Lines(lnglModuleLineCount, 1)
 ReDim Preserve slAllProjectLinesRedimPreserve(lnglTotalLineCount)
 slAllProjectLinesRedimPreserve(lnglTotalLineCount) = slLine
 Loop
 End With

Next vbclComponent

Next lnglLoopCounter ' Timer code
clTimer.StopTimer ' Timer code
Debug.Print "zmTimingCode" & "/" & "subtestRedim" & "/" & "280" & "/" & "Time elapswed :" & CStr(clTimer.Elapsed) ' Timer code
Set clTimer = Nothing ' Timer code

' ---
' Count First.

Set clTimer = New CHiResTimer ' Timer code
clTimer.StartTimer ' Timer code
For lnglLoopCounter = 1 To 1000 ' Timer code
ReDim slAllProjectLinesCountFirst(0)
lnglTotalLineCount = 0
For Each vbclComponent In vbplProject.VBComponents
 Set vbcmlCodeModule = vbclComponent.CodeModule
 With vbcmlCodeModule
 lnglModuleLineCount = 0
 Do
 lnglModuleLineCount = lnglModuleLineCount + 1
 lnglTotalLineCount = lnglTotalLineCount + 1
 If lnglModuleLineCount >= .CountOfLines Then
 Exit Do
 End If
 Loop
 End With

Next vbclComponent

 Page 240/ 324

ReDim slAllProjectLinesCountFirst(lnglTotalLineCount - 1)

lnglTotalLineCount = 0
For Each vbclComponent In vbplProject.VBComponents
 Set vbcmlCodeModule = vbclComponent.CodeModule
 With vbcmlCodeModule
 lnglModuleLineCount = 0
 Do
 lnglModuleLineCount = lnglModuleLineCount + 1
 lnglTotalLineCount = lnglTotalLineCount + 1
 slLine = vbcmlCodeModule.Lines(lnglModuleLineCount, 1)
 If lnglModuleLineCount >= .CountOfLines Then
 Exit Do
 End If
 slAllProjectLinesCountFirst(lnglTotalLineCount) = slLine
 Loop
 End With

Next vbclComponent
Next lnglLoopCounter ' Timer code
clTimer.StopTimer ' Timer code
Debug.Print "zmTimingCode" & "/" & "subtestRedim" & "/" & "313" & "/" & "Time elapswed :" & CStr(clTimer.Elapsed) ' Timer code
Set clTimer = Nothing ' Timer code

MsgBox "Done."
' ***
End Sub

 Page 241/ 324

69 Timing results after three iteration of 1000

zmTimingCode/subtestRedim/280/Time elapswed :45.7332562325209
zmTimingCode/subtestRedim/313/Time elapswed :42.7459380434622

zmTimingCode/subtestRedim/280/Time elapswed :45.7286757545452
zmTimingCode/subtestRedim/313/Time elapswed :42.1558093286235

zmTimingCode/subtestRedim/280/Time elapswed :45.5667217621354
zmTimingCode/subtestRedim/313/Time elapswed :41.9430500884319

The above is a copy paste from the immediate window. You can see that counting first is indeed faster.

You can also see that I’ve made a spelling mistake. Ah well. However, that’s for 1000 loopies! If you

play around with the number of loops, say take it down to 100. Then the difference is quite small and

sometimes counting actually takes longer! It’s up to you then, and what you are doing inside your code.

But at least you now you the tools to get some numbers! Given all the code we’ve built so far, it should

be relatively simple to add timing code for whole procedures throughout the project. This would give a

“report” in the immediate window, though it could be to a file as we did when compiling, that you could

look at while commuting on the train or whatever, in order to make descisions about which code to trim

down, look at to improve, split up, get rid of, or just leave alone.

 Page 242/ 324

It’s Complicated

While we are looking at performance, we can also measure how complex our procedure is. Sort of.

There are a lot of "metrics" for program code. Some of these are pretty self evident. All of the following
can increase the "complexity":

• More code lines

• More variables

• More "branches" If .. For.. and so on

• Deeper nesting

Warning here: All of the next are my thoughts, that’s the proviso.

There have been soooo many attempts to produce code metrics that will definitively say, this code is
good or this code is bad. IMHO they’ve all failed. Put them all together though and we can get a picture
of the code without even looking at it. I think it still doesn’t mean much unless you compare it to other
code stats that were produced by the same people in the same organization with the same rules with
similar code, and possibly when the wind was from the south, or north, or maybe east.

If you are going to use these metrics you need to build up a subjective knowledge of this stuff over time

for yourself and in your situation for the code you write. If your calculations consistently give a CC of
15… which is classed as "Complex Code", but you find that that’s okay for you and your organization
then that’s exactly what it is. Okay for you and your organization. Actually, the next classifications
description 20-40, is "Very complex code". Pretty definitive huh!?

I think what I’m getting at is that code metrics work well COMPARATIVELY but on their own they can
only produce very course results at best and misleading at worst.

That’s not to say they aren’t useful! If one of the numbers is way way high, there is probably a problem
or at the very least something that needs to be looked at.

As I said, there are a lot of different "measures" and there are at least as many tools to measure them!

"Profiling" a piece of code with metrics is great. We can tell how "complex" it is relative to the rest of
our code and how quickly or slowly it runs compared to the rest of our code.

And there’s the rub. "Relative", "Compared", to the restof our code". To gain an overview we need to
apply this to a number of procedures. The more the better. Possibly every one of them in every
module. Wo/Manually doing this is out of the question. At least in my world!

To do this though we would have to go through the whole project and in every proc in all modules insert
our timing code.

 Page 243/ 324

Just a mo though! We’ve got code to loop through procedures in a module and to loop through
modules in a procedure! And even loop through lines in a procedure1

WOW… Are we good or what!

 Page 244/ 324

VBA Key Words

I’m including this as a sort of novelty. However, I use it in my add-in and has saved my bottom more than
a few times.

If you want to see if a "word" is defined somewhere in your project you’re usually SOL. Typlib libraries
give you all of the keywords if they are set up. Accessing them is quick and easy and then you have to
check that your word is or isn’t there. But it ain’t simple to do.

There maaaaayyyyyy be an easier way.

Let me ask you, how do you know if what you are typing in is a keyword or something already defined and
not needing to be added to the Dims or whatever.

You do just that… type it in, but you do it in lower case.

If it’s a keyword, trust me, the case will change. This is consistent across all of VBA as far as I can tell and
I’ve spent a looooong time looking. There is no keyword that is all lower case. Anywhere.

Hmmmmm.

So, we can type/insert a word into a procedure in all lower case and if the case alters it’s a keyword.

For this we need to add a new project. Remember remember TENET ONE. What was it again? Oh yeah…
don’t do it to yourself! We do all this somewhere else. We can add a new project by adding a new
workbook/project/presentation/document.

We can add a new module in the new VBA project there and we can add a new procedure in that module.
Hold on though. We’ve done that before I think!

Anyway, we also know how to add code to that procedure!

Here it gets a bit tricky dickie.

If we have a word we want to test to see if it’s a keyword we would normally just type it in. In lower case.

But! That won’t get evaluated until it’s in a valid expression.

Try it. New module… add a sub… in the sub type "Mike&Lisa"… or anything. Whatever you type will be
accepted because VBA thinks it’s a new variable with upper and lower case. It won’t get evaluated and
give an error until you try running the procedure. You do have Option Explicit set don’tchya.

 Page 245/ 324

In the same procedure now add "Dim Mike As String". Then underneath that, or anywhere really add a
line mike ="stupid". The case of mike will change from mike to Mike.

Don’t panic! This is normal and you are probably well aware of it. In fact, it’s so normal as to not be
mentioned very much!

We can do something with that.

In our new module in our new project in our new procedure try a few keword you know… Try "dim"… on

its own. You’ll get an error. But! dim will stay all lower case.

VBA will parse lines and if valid will enter it into the VBE. THEN it will change any case that needs to be
changed.

ALL VBA kewords change case because none of them are all lower case. None. That appears to be how

Microsoft has designed things. There is noooooo reason after sooooo many years, to even imagine they
are going to change.

And, if you stick to a naming convention that includes upper and lower case, so will all of your procedure

calls and variables as well! They will all be included in the VALID list.

Did I mention previously that I hate single character lower case variables. "i" is a favourite closely followed
by "j" then there’s a gap till we get to "s" with "n" coming in a poor fourth. It’s horrid!!

Getting back, and being brief, we add code to our new procedure in our new module in our new project
that contains our word/variable/string all in lower case. Then we get it back and compare it to the original

lower case. If it’s different… It’s a key word. The "trick" is that our word has to be part of a VALID line of
code

Simple.

We need to differentiate from a user defined one though like a procedure definition. Easy peasy if our
variables and procedure names are mixed case. Oh, I think I’ve mentioned that already.

If we find a keyword, we can add it to a list of key words. Where would we keep that I wonder. Oh, we
have code to add to the registry! Maybe that’s a good place.

Anyroad up, Here is a procedure created by code, to test for the keyword olPane.

Public Sub subKWTest()

 Page 246/ 324

Dim olpane

Olpane
a = olpane(a)

olpane a = a

olpane a = a then
olpane a

If a = a olpane
If olpane Then

Redim (olpane)

Select olpane

For Each a In olpane
For Each olpane In a
For Each a olpane a

For olpane = a To a

For a = olpane To a
For a = a To olpane
For a = a olpane a
do olpane a
olpane do
Object.olpane

While olpane

Do Until olpane
Loop Until olpane
End Sub

It’s clear from this that olPane is NOT a VBA keyword because it stays lower case. Some of the lines

are in red meaning a syntax error. It doesn’t matter. As long as the line as a whole is valid, we’re
good. We’re not bothered about compile errors because there’s totally no way in an IKEA kitchen we
are going to try and run this!

I keep all of these “valid” lines in my INI file at the moment so I don’t have to recode to add another line
if I need to. Here are the INI entries. I hope you see the correlation with the above generated code.

 [KeyWordCodeTestLines]
keywordCodeTest1=Dim KW
keywordCodeTest2=KW
keywordCodeTest3=a = KW(a)
keywordCodeTest4=KW a = a

 Page 247/ 324

keywordCodeTest5=KW a = a then

keywordCodeTest6=KW a
keywordCodeTest7=If a = a KW

keywordCodeTest8=If KW Then

keywordCodeTest9=Redim (KW)
keywordCodeTest10=Select KW

keywordCodeTest11=For Each a In KW
keywordCodeTest12=For Each KW in a

keywordCodeTest13=For Each a KW a

keywordCodeTest14=For KW = a to a

keywordCodeTest15=For a = KW to a
keywordCodeTest16=For a = a to KW
keywordCodeTest17=For a = a KW a

keywordCodeTest18=do KW a

keywordCodeTest19=KW do
keywordCodeTest20=Object.KW
keywordCodeTest21=While KW
keywordCodeTest22=Do Until KW
keywordCodeTest23=Loop Until KW

I grab the whole section, strip off the front, replace "KW" with the word I want to test IN LOWER CASE,
and then start inserting lines in the separate project/module/procedure.

After that I read the lines back and have a look at them. If the word is still lower case then it’s NOT a
VBA keyword.

As you can imagine there’s an overhead. But ALL keywords are identified.

######### Other people have taken er, other approaches. Notably Chris Greaves.

Code for keywords

 Page 248/ 324

 Page 249/ 324

HTML Report

This has nothing to do with the VBE apart from creating a HTML report.

Reports of this type, that document values of things, can usually be separated out into a minimum of
two parts. A heading and the items that are reported, and sometimes a footer/summary.

These parts can be sliced, diced, sorted, and ported, to procedures to create whatever format report
you want in whatever application you want. CSV, Excel, Word, to name a few.

For CodeCode, the report will nearly always be as a table in a HTML file.

If you check out the example report of our cross-reference procedure report in the appendices, then

there is a bit more. First, I print the items from subWhereAreWe. Then I print the headers, then I print
the details. All packaged nicely in a bunch of tables.

I present this “as is” as an example. Practical working code is in CodeCode. This is mostly to show how
to build a HTML file.

 Page 250/ 324

Recap number three

Let’s have a look at the code we’ve built so far… and yes I’m repeating so it looks more impressive.

 Last Recap

1 subccSortDims

2 subMsgBox

3 subccSortSelectedDims

4 fncGuessVarType

5 subWhereAreWe

6 cNameExample

7 subInsertGetProperties

8 cWhereAreWe

9 subccSplitAllDims

10 subccInsertSelectionDebug

11 subccDeleteDebugPrint

12 subClearIW

13 cBarEvents

14 subBrandNewBarAndButton

15 subBookMarkAndBreakpoint

16 frmMsgBox and using a form as a class to return information.

17 subListProcsToImmediateWindow

18 subAddTraceLinesToAModule

19 subDeleteDebugPrintForModule

20 subGoToLine

21 subccInsertModuleLineNumbersInProcedure

22 subccDeleteLineNumbersInProcedure

 Since last Recap.

23 We’ve talked about arranging procedures by name so the one you’re testing is at the top of

the (whisper) macros… menu

24 We’ve gone to the Dims Bottom

25 subccInsertSingleDim

26 subLoopThroughProcLines

 Page 251/ 324

27 "Multithreaded" to create a compile report

28 Deleted lines tagged with end comments

29 subDeleteDoubleBlankLines

30 Concatonated continued lines to single lines from modules

31 Concatonated continued lines to single lines from an array

32 Formatted Declarations

33 Code to count and return Dims in a procedure

34 Added Timing code and code to add that code to do timing.

35 Added code to count various lines in a procedure for metrics like Cyclic complexity, Halstead

metrics and Lines of code.

36 Code to list procedures and the top comments

37 Code to create a HTML report

38 Procedure to check keywords without using TLI.

Not bad!

 Page 252/ 324

What’s to come?

Welllll, I want to talk about making all this stuff available in an Add-in. Being able to insert comments
consistently formatted may be a good idea. My personal methodology for handling errors. Backing up,
and adding an array for parameters to cWhereAreWe. I also want to present code to export a whole
project either as separate modules or as a single text file. And of course, importing from that. A big thing

about exporting to a text file is the ability to SEE differences using for example WinMerge. There are
loads of proggies out there that will sort procedures but we’ll do that too and chat about where to put
procedures that are being worked on. A big advantage to an export/import process is that code gets
"debloated". Rob Boveys code cleaner is perfect for doing just this and I mention it in the appendices.
But be aware that as soon as the VBE compile process kicks in, it’s big again, but maybe not quite so big
as before.

Though the code is too large to comfortably present here, I also want to at least look at, what needs to be
done to produce a Procedure Cross Reference. This has a bearing on inserting Dims into code where they
aren’t defined, and to cleaning a procedure of Dims that aren’t used. I’m thinking of presenting those
three as a separate item in the near future. It’s a lot of VBA code.

Some code analyzing programs go much further than I have and do things like show up or delete code
that will never be used/gone through, so called dead or redundant code. And they do other stuff like
drawing flow charts and so on. I’m not that good. It would take me a loooong time to get as far as that.

However, I’ll bet none of them have even all of the procedures we’ve covered here, hehehe. And all this
in totally free VBA as well, for you to personalize tweak improve or whatever! No royalties or anything
either!

That actually begs the question. Is any of this useful? If the big boys and girls haven’t done it, is it worth
it?

My opinion FWIW? Unequivitably, for me, YES.

I use this stuff and more all the time. I love having my Dims sorted. I think being able to insert and

especially delete, ALL debugging code in one go is great! Being able to see if I already have code to do
something is a boon and has saved me much repeat coding where in the back, well pretty much to the
front actually, of my mind, I’m thinking "I’m sure I’ve written this before". The compile stuff has shown
up multiple problems all in one go that I could solve by a one line change to a class Get procedure for
example. I can insert a Dim for a local variable if I get a compile error without typing! The timing code

has helped me find bottlenecks in procedures that needed recoding or splitting up. I really like having
pretty formatted declarations that I can read without scrolling to the right. Being able to change all
Integers to Long in a whole project at once has been terrific! We’ve also got code to go through each

procedure in a project and apply a set of procedures to it. That means I can format ALL of my procedures
in any or all of the open projects, in any way I choose with code I’ve written.

 Page 253/ 324

A KEY element of this has been the cWhereAreWe class and the ascociated subroutine. It’s been updated
and updated and updated and I think it’s still got some legs. With this in mind, a date stamped and
complete copy of the latest cWhereAreWe class module is on the web site. It’s long. Our, Lisas’ and mine,

original subWhereAreWe returned an array of about 70 items. Some of these were sort of "doubled up"
because I returned the same line number items of the module for the array code so they didn’t have to
be recalculated, and some calculated values. Did I mention I was lazy? But still.

We have the Dims in there, we have the code in there, we have some metrics in there, pretty soon we’ll
have parameters in there. We have the project, codemodule, codepane and component in there. We
even have where we are in there! Woohoo!

Again, and as always, if you think it needs an update and you do that and it works and is useful to you,
then let me know why and so on along with your code and if it’s etc ect you WILL get credit. I’ve been
guilty of not crediting in the past and have been quite rightly booed and shouted at. I go to a lot of trouble
to make every attempt to give credit where it’s due.

 Page 254/ 324

Sharing your code with yourself

When you have your code to do stuff in the VBE you’ll probably want it available to all of your VBA

coding efforts. Of nessecity this has to on an application by application basis. There’s our duplication of

code problem again.

You need to create an Add-In.

Unfortunateley the naming conventions for add-in files, how they work, and where the files are placed is
different for each application.

Having said that, you can change at least the latter.

There are two ways you can use a VBA add-in. Note I say a VBA add-in. COM add-ins are beyond the
scope of this document so I’m studiously ignoring them.

If you write a piece of VBA code that you want implemented across applications, it ain’t easy to share. I
think this is at least, and in MS WORDs case very much so, the fault of having different development
teams, and that perhaps they didn’t talk to each other. Probably the two most mature products in office
age wise, are WORD and EXCEL. They work differently in so many respects that the above conclusion is
not difficult to come to. I have to say though, that the latter versions have gone some way towards
rectifying that.

Add-in files extensions for the big four are…

• Excel
xlam

• Powerpoint
potm

• Word
dotm

• Access
mda

The best way to install an add-in? By hand. In ACCESS you have no other choice. You have to insert a
module and copy code to it.

This means that it’s pretty well inevitable that there will eventually be a code version problem across
applications. Using an add in goes at least part way to solving that. If you only ever use access VBA or
Excel VBA or Wors VBA, then you’re quids in.

 Page 255/ 324

Excel

In Excel you can save the code in a .XLAM file.

 Page 256/ 324

Word

In Word you can use a .DOTM file… but it’s not the same mechanism.

 Page 257/ 324

PowerPoint

To create a PowerPoint add-in, begin by creating a macro-enabled PowerPoint presentation (.pptm)

file. PowerPoint uses a unique file format for add-ins (.ppam), but that format is read-only. So, you

write and edit your code in the .pptm file and then save a copy as a .ppam add-in.

By default, loaded PowerPoint add-in files don't appear in the Project Explorer of the Visual Basic

editor. To view and open loaded .ppam projects, add a new value to the Windows Registry. In the

key HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\PowerPoint\Options, add

a DWORD value named DebugAddins, with a value of 1. Then, restart PowerPoint. Note that you

can view, export, and copy content from the loaded .ppam project. You can also make edits to test

them in the loaded add-in, which makes the add-in function similar to a handy scratch pad when

you’re troubleshooting or want to try something new. However, you cannot save changes directly in

the loaded add-in file.

 Page 258/ 324

Access

Some Tips hints and gotchas!

http://www.granite.ab.ca/access/addins.htm

You may or may not need an add-in because you can also set a reference to the database that contains

your code.

http://www.granite.ab.ca/access/addins.htm

 Page 259/ 324

Outlook

Add ins for outlook are pretty much silly. This is because you can only ever have one copy of outlook

running at any one time on any single computer. Having said that it’s not strictly true. You can have a

local copy of outlook running and a web copy at the same time. But because the web versions of the

office application don’t do VBA then it’s all hunky dory.

 Page 260/ 324

No Comment?

If we have a lot of procedures, then sometimes we tend to write another procedure to do the same thing
as a procedure we’ve already written, just because we’ve forgotten, or can’t be bothered to look for, the
original code. Bin there, got multiple T-shirts, read the book and got the DVD.

If, and that’s a big IF, we’ve named our functions subs and properties in a reasonably understandable way
then we have a reprieve. Even better if we’ve included comments after the procedure definition. We
come back now to a bit of standardization. Most people are free spirits. If you don’t want to document,
then don’t. But here’s code that will create a list of procedures with any comments below the definition.
It’s useful sometimes. Especially if you’re working for a client. Hehehe. Don’t they love their
documentation. Don’t get me wrong here, that’s not so much of a joke!

This will create an array. The array could be passed to anywhere: a text file or back into word or excel for
example. And there’s a deliberate attempt to be "general" here. We create an array that can be used by
other procedures wether it be one to create a HTML report, which I present later, or imported into a table
in excel or word or even an access database.

The process is:

1. Loop through all procedures in all open projects in the VBE
o We got that covered

2. Collect project name, module name, procedure name, module start line, number of lines
o We can do that too

3. Create elements in an arry for this
o Awwww Arrays are just big buckets

4. Sort it
o Gonna steal JKPs’ quicksort maybe!

5. Loop down through the code collecting comments till we hit a non comment line
o Hey We’ve done that before

6. Add the comments to the array
o See 3

 Page 261/ 324

 Page 262/ 324

Inserting comments

Code to insert comments with userform.

 Page 263/ 324

Runtime Errors

Errors like "Variable not defined" are compile errors. Procedures will not even start to run until they are

resolved.

Errors that occur at runtime may include subscript errors, type errors, and lots of others. Those two

though, are I think possibly the most common ones.

There are a number of ways of dealing with runtime errors. Some are:

1. Ignore them

2. Put general error code into procedures and possibly loop back

3. Try to deal with errors as they occur

4. Stop the code where it is

5. Quit with a message

6. Just Quit

7. Use third party software like vbWatchdog

I go with number three. My reasoning is that I don’t want the user to get an error message at all!

If you have no code at all for errors then you are asking for trouble and phone calls in the night from irate

users and others.

If you put general error code into a procedure then almost by definition you will report an error to the

user and stop. The result is a slightly less irate user who may call in the morning.

If there is an error in "normal" code, there is something wrong with something else on that system, and

not your code. And it does happen. More than you’d think. I’ve had errors saying the function Left$ isn’t

known/recognized. That’s really scary. It’s an inbuilt string function! And it’s tricky to track down. SO, a

user might get a message, or should, that there is an error in module SortDims and to call

0002020002022202. That’s not a valid phone number BTW. You drag yourself to a computer at 04:27

and track finally down the errant line. It’s:

slLine = Left$(slLine,1)

WT* is wrong with that!?

Deleting any missing references and the Temp folder, clearing the cache, and possibly rebooting, will in

my humble experience get rid of that particular message. Then there’s the little-known String object. You

can always change string functions to String.Function. Intellisence will help there. There’s little you can

 Page 264/ 324

do about that stuff except be aware of it and have an idea of how to deal with it. If it’s going to happen it

will, wether you like it or not.

Back to normal errors.

Most people who code, are fairly well aware of items that could produce an error. Database access, File

access, Network access. Subscripts in arrays. Empty or Null strings. If you’ve tested enough, you’re damn

sure where there may be problems. My own personal preference for dealing with errors is to identify as

many of those places as possible and put specific code there to cope with problems.

This takes the form of:

70 My method of dealing with errors

Dim lnglErrNumber As Long

 Dim slErrDescription As String

 Then around a possible problem line:
On error resume next

 POSSIBLE ERROR LINE

Imediately after, set variables from the Err object.
lnglErrNumber = Err.Number

 slErrDescription = Err.Description

Immediately after that turn error checking back on!
On error goto 0

Now deal with what’s happened.
Select case lnglErrNumber
Case 0
Case n1
Case n2
Case else

Consider always having an Else clause. It can be empty. But then you know it’s empty! Same
for If blocks.

End select

My methodology allows me to say:

 Page 265/ 324

• Hey guys we’ve got a problem here what do we do?

• Oh… it’s a file error /empty string / negative index. Let’s tell the user and go back and give her/him

another chance.

• Oh I know this one, Nothing found. Tell User and go back.

• Oh crap. Not come across this before, can we rollback? Better say what’s happening though and

give the the user a choice of aborting or trying again.

• No input. I’m outa here. Think I should tell the user what’s happening though.

Get my drift?

I can’t remember where it came from but the philosophy is, Don’t leave your user in the dust! And

remember, it may be you! You can’t help but bemusing the user though if you have a general procedure

error routine. It’s quite likely that if there is an error in modue doodad and procedure thingy you may

know, and are able say, oh yeah, that has to be the foo error. Then say so!!! Better yet, deal with it and

move on!

Dealing with errors in this way adds quite a few lines to the code. About 15 per possible error. I’m

tempted to say, so what. Instead, I’ll say, it’s worth it. You get specific code and actions for specific or

general errors.

Okay. Enough evangelizing.

Here’s code to insert general error code around a line. In fact, it’s nothing we haven’t done before!

Note the end of line tags that are inserted so you can look for them to delete if you want.

Also note that this is, by its nature, generic, and needs updating if you suspect specific errors may occur.

Having said that, you may wish to use a parameter or some such to specify a file access error or a database

error or some such.

71 subccInsertErrorCodeAtLine

Sub subccInsertErrorCodeAtLine()
' NOT BATCH.
' NO REPORT.
' NO END MESSAGE.
'
' Insert Error Code Around the current line.
' Puts "' Inserted" at the end of the lines.
'

 Page 266/ 324

Dim blnlErrDescriptionFound As Boolean
Dim blnlErrNumberFound As Boolean
Dim blnlMessageFound As Boolean
Dim clWhereAreWe As cWhereAreWe
Dim lnglArrayStartOfCode As Long
Dim lnglCurrentLine As Long
Dim lnglIncr As Long
Dim lnglModueStartOfCode As Long
Dim lnglModuleEndProcedureLineNumber As Long
Dim lnglN As Long
Dim lnglNumberOfCodeLines As Long
Dim lnglStartOfDims As Long
Dim lnglStartLine As Long
Dim llStartOfSub As Long
Dim slCodeLine As String
Dim slDimList() As String
Dim slDQ As String
Dim slEndOfLine As String
Dim slErrDescriptionVar As String
Dim slErrNumberVar As String
Dim slIndent As String
Dim slMessageVar As String
Dim slModuleName As String
Dim slProcedureName As String
Dim slVarArray() As String
Dim slWhereAreWe() As String
Dim vbclComponent As VBIDE.VBComponent
Dim vbcmlCodeModule As VBIDE.CodeModule
Dim lnglInsertPoint As Long

' ---
' Start.

slDQ = Chr(34)

slEndOfLine = " ' Inserted."

slErrNumberVar = "lnglErrNumber"

 Page 267/ 324

slErrDescriptionVar = "slErrDescription"
slMessageVar = "slMessage"

Set clWhereAreWe = New cWhereAreWe

lnglArrayStartOfCode = clWhereAreWe.LastDimLinePlus1

If lnglArrayStartOfCode = 0 Then
 Exit Sub
End If

Set vbcmlCodeModule = clWhereAreWe.CodeModule
lnglStartLine = clWhereAreWe.ModuleProcBodyLine
lnglNumberOfCodeLines = clWhereAreWe.ProcCountLines
slModuleName = clWhereAreWe.ModuleName
llStartOfSub = clWhereAreWe.ModuleProcBodyLine
slProcedureName = clWhereAreWe.ProcedureName
lnglStartOfDims = clWhereAreWe.FirstDimLine
lnglModueStartOfCode = clWhereAreWe.LastDimLinePlus1
lnglModuleEndProcedureLineNumber = clWhereAreWe.ModuleProcEndLine
lnglCurrentLine = clWhereAreWe.CurrentModuleLineNum

' Code gets inserted ABOVE the line number specified.
lnglInsertPoint = lnglCurrentLine

If lnglModueStartOfCode = lnglModuleEndProcedureLineNumber Then

 ' No code or Dims.
 lnglInsertPoint = lnglModuleEndProcedureLineNumber
 lnglIncr = 1

Else

 lnglIncr = 2

End If

' Get the indent.
slCodeLine = vbcmlCodeModule.Lines(lnglCurrentLine, 1)

 Page 268/ 324

slIndent = fncGetIndent(slCodeLine)

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & "On Error Resume Next" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + lnglIncr

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 vbCrLf _
 & slIndent _
 & "lnglErrNumber = Err.Number" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 2

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & "slErrDescription = Err.Description" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & "On Error GoTo 0" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _

 Page 269/ 324

 & "Select Case lnglErrNumber" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & "Case 0" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & "Case Else" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & " slmessage = " _
 & slDQ & "Procedure " _
 & slProcedureName & slDQ _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & " slmessage = slMessage & vbcrlf & " _
 & slDQ & "Module Line " _
 & CStr(lnglCurrentLine - 13) & slDQ _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

 Page 270/ 324

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & " slmessage = slMessage & vbcrlf & " _
 & slDQ & "Err Number " _
 & slDQ & " & CStr(lnglErrNumber)" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & " slmessage = slMessage & vbcrlf & " _
 & slDQ & "Err > " _
 & slDQ & " & slErrDescription" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & " submsgbox slMessage" _
 & slEndOfLine
lnglCurrentLine = lnglCurrentLine + 1

vbcmlCodeModule.InsertLines _
 Line:=lnglCurrentLine, _
 String:= _
 slIndent _
 & "End Select" _
 & slEndOfLine _
 & vbCrLf

' ---
'#####

 Page 271/ 324

' Code inserted... Check for variables.
'slVarArray = fncGetVarNamesFromArray(slDimList())
'subGetVarNamesFromDimList slDimList(), slVarArray()
blnlErrNumberFound = False
blnlErrDescriptionFound = False
blnlMessageFound = False
If fncIsArrayAllocated(slVarArray) = True Then
 slVarArray = fncGetNames(slDimList())

 For lnglN = 0 To UBound(slVarArray)
 If slVarArray(lnglN) = slErrNumberVar Then
 blnlErrNumberFound = True
 End If
 If slVarArray(lnglN) = slErrDescriptionVar Then
 blnlErrDescriptionFound = True
 End If
 If slVarArray(lnglN) = slMessageVar Then
 blnlMessageFound = True
 End If
 Next lnglN

End If

If lnglStartOfDims = 0 Then
 lnglStartOfDims = clWhereAreWe.LineAfterDefinitionPlus1 ' CInt(slWhereAreWe(9, 4)) + 1
Else
 lnglStartOfDims = clWhereAreWe.LastDimLinePlus1 'CInt(slWhereAreWe(9, 1)) + 1
End If

If Not blnlErrNumberFound Then

 vbcmlCodeModule.InsertLines _
 Line:=lnglStartOfDims, _
 String:= _
 "Dim " & slErrNumberVar & " As Long"
 lnglStartOfDims = lnglStartOfDims + 1
End If
If Not blnlErrDescriptionFound Then
Stop

 Page 272/ 324

Here is before and after code using our infamous subtestsubccWhereAreWe.

72 Before inserting error code

Sub subtestCWhereAreWe()

Dim clWhereAreWe As cWhereAreWe
Dim slDimsArray() As String
Dim slCodeArray() As String

Dim lnglDimCount As Long
Dim vlVar As Variant

Set clWhereAreWe = New cWhereAreWe

slDimsArray = clWhereAreWe.DimsArray

slCodeArray = clWhereAreWe.CodeArray
lnglDimCount = clWhereAreWe.DimCount

 vbcmlCodeModule.InsertLines _
 Line:=lnglStartOfDims, _
 String:= _
 "Dim " & slErrDescriptionVar & " As String"
 lnglStartOfDims = lnglStartOfDims + 1
End If
If Not blnlMessageFound Then
Stop
 vbcmlCodeModule.InsertLines _
 Line:=lnglStartOfDims, _
 String:= _
 "Dim " & slMessageVar & " As String"
 lnglStartOfDims = lnglStartOfDims + 1
End If
Stop
' ***
End Sub

 Page 273/ 324

Stop

' ***
End Sub

Put the cursor on line “lnglDimCount = clWhereAreWe.DimCount” and run subccInsertErrorCodeAtLine.

73 After inserting error code

Sub subtestCWhereAreWe()

Dim clWhereAreWe As cWhereAreWe
Dim slDimsArray() As String

Dim slCodeArray() As String
Dim lnglDimCount As Long
Dim vlVar As Variant

Dim lnglErrNumber As Long
Dim slErrDescription As String
Dim slMessage As String

Set clWhereAreWe = New cWhereAreWe

slDimsArray = clWhereAreWe.DimsArray

slCodeArray = clWhereAreWe.CodeArray
On Error Resume Next ' Inserted.
lnglDimCount = clWhereAreWe.DimCount

lnglErrNumber = Err.Number ' Inserted.
slErrDescription = Err.Description ' Inserted.
On Error GoTo 0 ' Inserted.
Select Case lnglErrNumber ' Inserted.
Case 0 ' Inserted.
Case Else ' Inserted.
 slMessage = "Procedure subtestCWhereAreWe" ' Inserted.
 slMessage = slMessage & vbCrLf & "Module Line 55" ' Inserted.
 slMessage = slMessage & vbCrLf & "Err Number " & CStr(lnglErrNumber) ' Inserted.

 Page 274/ 324

 slMessage = slMessage & vbCrLf & "Err > " & slErrDescription ' Inserted.

 subMsgBox slMessage ' Inserted.
End Select ' Inserted.

Stop

' ***
End Sub

And what do we do if we don’t want the error code? We use the tags at the end of the lines to delete

the inserted code!

 Page 275/ 324

Backup

You must backup.

This is because, as sure as the sun comes up every day and water is wet, you will need a backup at some

time or other. I know of no one, anywhere, who hasn’t needed to look at past code, or

recover/restore, from backups.

It doesn’t really matter how you do this. Some options are:

• Just save to a different filename every time you save.

• Use a third-party program.

o Git

• Build your own system.

• Use a different program than the IDE for editing that has an autosave.

• Use code to do an autosave.

A lot depends on your situation.

If you are on a network of some sort in a multiple user environment, then there will be backups made

anyway. If they’re not then you really should consider changing your employer. You will need to

contact the network admin to help you with restoring. In fact, you may very well be the network admin!

Be careful not to overwrite the current code/files!!

If you are a single user, coding mostly for yourself with a small or even a large audience, you may choose

to make an “on demand” backup. That is, manually backup before there are significant changes. You

could implement an automatic backup, but that will possibly slow you down. This would be in the

autoopen of the relative application addin. The code would probably use the OnTime function to start a

backup every so often. We used OnTime in the Compile routines. I’ve “played” with add in auto open

routines in add-ins, and I’m not happy with the result so cannot speak to them. Just be careful if you go

down this route and test thouroughly! If you succeed I would very much like tyo hear from you.

I present here a procedure set to do an on demand backup.

The process is:

I emphasise that this is no substitute for a commercial product! It’s very definitely home grown roll

your own.

 Page 276/ 324

 Page 277/ 324

 Page 278/ 324

Parameters in WhereAreWe

Code to retrieve parameter names.

 Page 279/ 324

Export and Import

Notably there is an add-in to do this by Jan Karel Pieterse. Please do check JKPs’ link in the appendix.

There is code here to export each module separately or to a single text file. I’m stealing that idea from

Jan Karel in that I’m sorting the code modules in the single text file as well. We could even export a

sorted list of procedures singly over all modules but I don’t recommend that. The reason being

dependencies. Exporting a procedure is fine as long as it doesn’t call any other procedures. If it does,

you’re buggered. This is one of the reasons I advocate lots of modules. By setting up all of the called

procedures in the same module as private, the module becomes "self supporting" as it were. This could

mean multiple copies of the same procedure being in different modules and that has to be carefully

monitored. The same goes for classes. By putting all the code needed for the class into the class we are

more than likely going to have multiple copies of the same procedure code all over the place.

This is unavoidable in all but the most strictly controlled environments.

One way to do this is to have a librarian. That person would control, and be responsible for, any

published code and make sure any new code is propagated through the rest of any relevant projects.

This is all just for us to use in our own VBE environment though, so it should be okay. Shouldn’t it? Well

let’s assume that anyway.

Having said that, CodeCode, available for free from the web site, has a couple of tree controls that lists,

those procedures being called by other procedures and those procedures that call other precedures and

what procedures they call. There is a button on that form to creqate a module from a procedure. This

will try and load the selected procedure and all of the called procedures and procedures they call into

one module. I’ve used it and it works pretty well.

Phew!!! Was that a mouthful or what!

If we want to sort procedures, we need to pick up the procedure names, sort them, and then pick up the

procedure code in that order, delete the old procedures and insert the sorted procedures in the new

order. This isn’t as simple as it sounds because we can’t just sort all of the procedure names. We have

to do it on a module by module basis. It’s also a bit scary. I mean, c’mon, are you comfortable with

deleting code you know works? Hehehe.

So the first thing we do is save everything. The whole shebang. The file containing the project and all

the modules are saved to a folder with a date and time stamp. We don’t delete that folder either. It’s

there until you are satisfied everything works and then you can delete it yourself. If you want.

 Page 280/ 324

This also has a lot to do with backups of course.

Code for export and import.

 Page 281/ 324

Sort Procedures

 Page 282/ 324

Making use of procedure names

 Page 283/ 324

Considerations for Inserting, Cross referencing and Cleaning

Amongst all the lists that VBA must use internally for EVERY procedure, is a list of variables local to

that procedure, a list of module level variables for every procedure in a module, and a list of global

variables for that project. It must also be able to resolve global procedures and variables that are visible

to it possibly from other projects.

This isn’t simple. I take my hat off to the dev team in fact!

Take a Cross reference. We need to:

• Know where we are so we can get the procedure code

• Create a list of Defined variables from the procedure

o Dim
o Const
o Static
o Parameters

• Create a list of Used variables from the procedure code

• Filter out key words

• Create a list of available variables from the same module as the procedure

o Private Declare procedures
o Private variables

▪ Dim
▪ Const
▪ Static

o Private ENums
o Private Types
o Global/Public Declare procedures
o Global/Public variables
o Global/Public ENums
o Global/Public Types

• Create a list of Available variables in other modules

o Public Procedures
o Public variables

▪ Dim
▪ Const
▪ Static

o Public ENums
o Public Types
o Friend Procedures

 Page 284/ 324

• Create a list of Available procedures in the same module as the procedure

o Private procedures
o Public procedures
o Friend Properties
o Friend Procedures

• Create a list of Available procedures from other modules that do not use Option Private

Module

o Private procedures
o Public procedures
o Friend Properties
o Friend Procedures

• Create a list of Availiable items from other projects that are referenced by this project

o Public Procedures
o Public variables
o Public ENums
o Public Types

Do let me know if you see or know of something that I’ve missed. With so much, it’s more likely than

not!

All of this means looping through projects and, looping through the module declarations in those projects,

and looping through all procedures in those modules.

We’ve done that!

 Page 285/ 324

Multilinguality

This is a big subject. But we’re not going to let that put us off are we? To be multilingual in any application

means having a database of some sort of different languages. Typically, this consists of different files that

need to be loaded to the application. To create that database, you need to capture all of the literals that

are displayed anywhere in the original languages and translate them. There’s a bit more involved. There

always is isn’t there. There’s catching compile error messages and runtime error messages. If you’re using

userforms there’s the length of the error message. Saying "This field must be a number" in English is

"Dieses Feld muss numerisch sein" in German. Different lengths. Especially when proportional fonts are

being used. Then again, how do you know wether you’ve missed even a single piece of text?

Some of the very eagle eyed out there will have noticed I prefix a lot of text with @. This is my attempt

to tell if I’ve missed something. When I code a literal string, I try to remember to put an "@" in front. I’ll

load a language "database", and none of the translations have an @ in front. Then I do my tests. If I see

an @ then I know I’ve missed a translation.

Getting the original language strings is a matter of trawling through the application and gathering all of

the text strings being used. It’s not just a question of going through code though. If any controls are being

used their captions or defaults need to be scraped as well. Then there’s tooltips.

It IS possible to tell the developer that a translated string is too long to fit into a label on a form say or a

checkbox caption. But you know what? The best way is to just look at it. I know it means a lot of time

consuming eyeballing work, but you know you’re worth it. Oops, you know it’s worth it!

This latter item, checking length programmatically, involves a label or text box on a userform. Let’s just

have a look at that. Open your favourite application, get to the VBE and Insert a userform. On the

userform insert two labels and two text boxes. This is an example so no need to change any names,

though it’s a good habit to get into! By default, the text boxes will be named TextBox1 and TextBox2 and

the Labels wil be Label1 and Label2.

In the userform code for the change events of the text boxes, enter:

74 String length example

Private Sub TextBox1_Change()
Me.Label1.Caption = Me.TextBox1.Width

End Sub

 Page 286/ 324

Private Sub TextBox2_Change()
Me.Label2.Caption = Me.TextBox2.Width

End Sub

Now type something into textbox1 and something else, preferable a translation of what you have just

typed in in a different language, into textbox2.

I guarantee the numbers in label1 and label2 will be different.

But! We now have a way of measuring lengths of translations and therefore wether the translations will

fit into the same control caption as the original. We can flag that so the translation can be looked at and

if nessesary altered.

First though, we need to gather all possible literals and put them somewhere.

Hmmmmm…. Registry? Nah, let’s put everthing into a language file this time like everyone else.

It’s a two stage process.

• Get the strings

• Save them

The translate process could possibly include information from the above temporary userform. Let’s do

that.

Get the strings

We need to loop through all code in a project and collect strings. Let’s start with that. We’re collecting

strings from modules. We don’t need to know the procedure name or anything but we do need the

module name and line number in the module so we can alter that. All strings are delimited by " and

there’s no way to write multiple lines with " _ " in code so we’re good for continuation lines.

Code to get strings.

 Page 287/ 324

 Page 288/ 324

Finally

This is not the end. Neither is it the beginning of the end. It is the start of the beginning.

Well, whatever that means, I intend to keep building tools for the VBE that are useful at least to me and

letting people like you know about them.

On that note let me know if you need to or want to do anything in the VBE with VBA or even if you have

some crazy idea! We can maybe work on it together!

Any road up, I hope you’ve enjoyed the journey and thank you for putting up with me. I doubt it could

have been easy.

I’ll be back!

 Page 289/ 324

A

 P

 P

 E

 N

 D

 I

 C

 E

 S

 Page 290/ 324

Appendix Notes

 Page 291/ 324

Appendix A Links

Yes. I know. I’ve probably missed out your favourite site. These are here because I find myself going
back to most of them time and time again, and or found them interesting. If you are really upset about

me not including a site get in touch and I’ll check it out. If I decide to include it you WILL get credit.

Chip Pearson

http://www.cpearson.com/excel/vbe.aspx

Whatever you do do NOT miss visiting this site. A lot of my code is thanks to Chip and his insights.
He explains the object model and the various parts and calls in the VBE. LOTS of downloadable code.
DO check the rest of his site, especially about arrays and classes! The caveat is it’s for Excel but there’s a
bunch of other stuff there as well.

Deconstruction of a code module

https://www.codeproject.com/Articles/640258/Deconstruction-of-a-VBA-Code-Module

This needs to be worked through. Worth it in the end.

Code for Menus and buttons in the VBE.

Chip Pearson at http://www.cpearson.com/excel/VbeMenus.aspx

xld on the vbaexpress forum at http://www.vbaexpress.com/forum/showthread.php?11748-add-an-
item-to-a-vbe-toolbar.

Jan Karel Pieterse

https://www.jkp-ads.com/

This site is in dutch and English. Emphasis is on Excel.

Stephen Bullen

http://www.oaltd.co.uk/

Lots of VBA. Again though, Stephens emphasis is on Excel.

http://www.cpearson.com/excel/vbe.aspx
https://www.codeproject.com/Articles/640258/Deconstruction-of-a-VBA-Code-Module
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.vbaexpress.com/forum/showthread.php?11748-add-an-item-to-a-vbe-toolbar
http://www.vbaexpress.com/forum/showthread.php?11748-add-an-item-to-a-vbe-toolbar
https://www.jkp-ads.com/
http://www.oaltd.co.uk/

 Page 292/ 324

Multithreading with vbs

https://analystcave.com/excel-multithreading-in-vba-using-vbscript/

http://www.databison.com/multithreaded-vba-an-approach-to-processing-using-vbscript/

https://analystcave.com/excel-vba-multithreading-tool/

This is about spawning VBS scripts to start instances of an application and running code in that
application.

Cyclomatic Complexity

https://www.tutorialspoint.com/software_testing_dictionary/cyclomatic_complexity.htm

https://www.guru99.com/cyclomatic-complexity.html

https://en.wikipedia.org/wiki/Halstead_complexity_measures

MSDN Discussion of high-performance time stamps.

https://msdn.microsoft.com/nl-nl/D66E0FC2-3AF2-489B-B4B5-78648905B77B

Defensive programming and reliability. Analysis of post mortem NASA software.

https://coder.today/nasa-coding-standards-defensive-programming-and-reliability-a-postmortem-
static-analysis-832d0f146b6f

Naming Conventions

https://rosettacode.org/wiki/Naming_conventions#Visual_Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/naming-
conventions

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/program-
structure-and-code-conventions

https://en.wikibooks.org/wiki/Visual_Basic/Coding_Standards

http://softwaresaved.github.io/distance-consultancy/conventions/VisualBasicCodingConventions.html

https://analystcave.com/excel-multithreading-in-vba-using-vbscript/
http://www.databison.com/multithreaded-vba-an-approach-to-processing-using-vbscript/
https://analystcave.com/excel-vba-multithreading-tool/
https://www.tutorialspoint.com/software_testing_dictionary/cyclomatic_complexity.htm
https://www.guru99.com/cyclomatic-complexity.html
https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://msdn.microsoft.com/nl-nl/D66E0FC2-3AF2-489B-B4B5-78648905B77B
https://coder.today/nasa-coding-standards-defensive-programming-and-reliability-a-postmortem-static-analysis-832d0f146b6f
https://coder.today/nasa-coding-standards-defensive-programming-and-reliability-a-postmortem-static-analysis-832d0f146b6f
https://rosettacode.org/wiki/Naming_conventions#Visual_Basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/naming-conventions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/naming-conventions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/program-structure-and-code-conventions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/program-structure-and-code-conventions
https://en.wikibooks.org/wiki/Visual_Basic/Coding_Standards
http://softwaresaved.github.io/distance-consultancy/conventions/VisualBasicCodingConventions.html

 Page 293/ 324

http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs3.htm

https://en.wikipedia.org/wiki/Hungarian_notation

https://en.wikipedia.org/wiki/Leszynski_naming_convention

http://www.sourceformat.com/coding-standard-vb.htm

Version Control

https://github.com/

String optimization

http://www.aivosto.com/articles/stringopt.html

export/import

http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs3.htm
https://en.wikipedia.org/wiki/Hungarian_notation
https://en.wikipedia.org/wiki/Leszynski_naming_convention
http://www.sourceformat.com/coding-standard-vb.htm
https://github.com/
http://www.aivosto.com/articles/stringopt.html

 Page 294/ 324

Appendix B Software for the VBE

There are a lot of add-ins and utilities on the internet. These are the ones I think are most popular and

useful or interesting. Some are free. And of course, Google is your friend!

Pretty Code Print

https://submain.com/products/prettycode.print.aspx

Free

COM AddIn

Print code with lines showing indents. VERY useful. This is not being maintained any more.

MZ-Tools

V8 https://www.mztools.com/

V3 Free. Google for it. It’s not available on the MZ-Tools site.

V8 Commercial ± 65 USD

COM AddIn.

Version 3 is free. Google for it. They’re up to version 8 at the mo but you have to pay for that. Well
worth downloading and using V3 in any case. You may have a bit of trouble on a 64 bit machine. Works
fine on 32 bit machines.

UPDATE: I got very angry about web sites pointing at V3 and downloading the V8 trial. I sent an ugly
and nasty message to the author, Carlos Quintero. It was in the heat of the moment and he was so
gracious in his reply, which he didn’t have to do at all. I totally and publicly apologise.

Smart Indenter

http://www.oaltd.co.uk/Indenter/Default.htm

Free

COM AddIn.

Wonderful program! Though not being supported by the author Stephen Bullen any more. As with MZ-
Tools 3, you may have trouble installing on 64 bit machines but works well on 32 bit. There is an

https://submain.com/products/prettycode.print.aspx
https://www.mztools.com/
http://www.oaltd.co.uk/Indenter/Default.htm

 Page 295/ 324

annoyance that, as it stands, the indent is four chrs. To alter that needs a registry update to
"HKEY_CURRENT_USER\Software\Microsoft\VBA\6.0\Common\TabWidth".

Here is a vba procedure to update it from the setting you have in the VBE courtesy of Hartmut
Gruenhagen.

75 Sub Update SmartIndenter Tab Width

'---
' Procedure : Update_SmartIndenter_Tab_Width
' Author : Hartmut Gruenhagen
' Date : 31-Jan-14
' Purpose : In Office 2010/13 SmartIndentor fails to pick up the
' VBA Editor tab width from the registry.
' The procedure writes the VBA editor tab width into a
' that Smart Indentor will then be able to read it.
'---
'
Public Sub Update_SmartIndenter_Tab_Width()
 Dim myWS As Object
 Dim intEditorTabWidth As Integer
 Dim intIndenterTabWidth As Integer
 On Error Resume Next
 Set myWS = CreateObject("WScript.Shell")
 intEditorTabWidth =
myWS.RegRead("HKEY_CURRENT_USER\Software\Microsoft\VBA\7.0\Common\TabWidth")
 myWS.RegWrite
"HKEY_CURRENT_USER\Software\Microsoft\VBA\6.0\Common\TabWidth",
intEditorTabWidth, "REG_DWORD"
 intIndenterTabWidth =
myWS.RegRead("HKEY_CURRENT_USER\Software\Microsoft\VBA\6.0\Common\TabWidth")
 If intIndenterTabWidth = intEditorTabWidth Then
 MsgBox "The tab width for SmartIndenter has been updated successfully in the registry."
& vbCrLf & vbCrLf & _
 "The new tab width is " & intIndenterTabWidth
 Else
 MsgBox "Oops! This didn't work." & vbCrLf & vbCrLf & _
 "Writing the VBA Editor tab width to the registry for SmartIndenter failed."
 End If
End Sub

 Page 296/ 324

UPDATE: This whole add in is part of the RubberDuck suit now. Their code also supports 64 bit which
the original sometimes had problems with.

WinMerge

https://sourceforge.net/projects/winmerge/files/latest/download

Free

Open source program to compare two files. Doesn’t matter what files… this will compare them. I use it

a lot. Copy your procedures or modules to text files and compare them. Simple! You *see* where the

differences are! We’ve "automated" this for procedures in the add-in.

Spy++

http://mdb-blog.blogspot.com/2017/02/download-microsoft-spy-140-2016-06-20.html

Free

Part of Visual Studio 2017 which is free to download from

https://visualstudio.microsoft.com/downloads/

Some other links for spy++:

https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-increment?view=vs-2017

https://stackoverflow.com/questions/43360339/how-do-i-get-spy-with-visual-studio-2017

A Microsoft program to "spy" on all windows. Does a good job and I couldn’t have written the compile
routines without it.

RubberDuck

http://rubberduckvba.com/

Free

COM AddIn

https://sourceforge.net/projects/winmerge/files/latest/download
http://mdb-blog.blogspot.com/2017/02/download-microsoft-spy-140-2016-06-20.html
https://visualstudio.microsoft.com/downloads/
https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-increment?view=vs-2017
https://stackoverflow.com/questions/43360339/how-do-i-get-spy-with-visual-studio-2017
http://rubberduckvba.com/

 Page 297/ 324

As mentioned, a "relatively" new kid on the block from 2014. Does lots including the smart indent
above for which it has refactored the code from the author. This indentor will work fine with 64 bit
machine too, and you can alter the indent spaces easilly. The parser is quite impressive. It’s GNU as
well so you can look at the code and even contribute to it.

CodeCleaner

http://www.appspro.com/Utilities/CodeCleaner.htm

Free

COM AddIn

From the inimitable Rob Bovey. In his own words:

"During the process of creating VBA programs a lot of junk code builds up in your files. If you

don't clean your files periodically you will begin to experience strange problems caused by

this extra baggage. Cleaning a project involves exporting the contents of all its

VBComponents to text files, deleting the components and then importing the components

back from the text files."

Notepad++

https://notepad-plus-plus.org/

Free

My favourite editor. Not for the VBE I know but I thought I’d mention it. You can switch on coding in VB
and that gives a similar colouring scheme. Being able to collapse the blocks of code is nice. If you put a
comment at the top of the block you end up with something like pseudo code.

http://www.appspro.com/Utilities/CodeCleaner.htm
https://notepad-plus-plus.org/

 Page 298/ 324

Code Manager

https://www.rondebruin.nl/win/dennis/codemanager.htm

Free.

EXCEL ONLY.

Small toolbox by Dennis M Wallentin. Indentation and working with files instead of in the VBE. There is
an export to VB Editor button to put code into the VBE. Dennis also has a free Windows API Viewer for
MS Excel.

vbWatchdog

https://www.everythingaccess.com/vbwatchdog.asp

Commercial ± 135 Euros

Global error handling. "vbWatchdog provides complete global control over error handling". Worth

downloading the free trial just to see it work!

VBA Code Compare

http://www.formulasoft.com/vba-code-compare.html

Free

Picks up the VBA from the host files so no need to copy/paste to txt files. Does not save any altered code

back!

https://www.rondebruin.nl/win/dennis/codemanager.htm
https://www.everythingaccess.com/vbwatchdog.asp
http://www.formulasoft.com/vba-code-compare.html

 Page 299/ 324

Appendix C Bubble Sort

A good tutorial is at…

https://www.tutorialspoint.com/data_structures_algorithms/bubble_sort_algorithm.htm

In its very simplest form for a list of n items:

76 Bubble sort psuedocode/Algorythm

For Counter1 = 1 to n
For Counter2 = 1 to n-1

Get item(Counter2)
Get Item(Counter2 +1)
If item(Counter2) < Item(Counter2+1)

Items are already sorted.
else

Swap the items

End If
Next Counter2

Next Counter1

This will iterate through the items n times. Some bubble sorts take into account already sorted items

and are a bit quicker. As stated though, This sort is fine for what we use it for here.

https://www.tutorialspoint.com/data_structures_algorithms/bubble_sort_algorithm.htm

 Page 300/ 324

Appendix D My Personal Naming Convention and procedure
layout

Variables

It’s simple. Relatively.

What do we want to know of a variable?

• Type

• Value

Usually that’s it.

But I want more!

I want to know if it’s global or local and so on.

Sooooo, my Variable naming convention is:

• <type><scope><Name>

With no underscores or anything. I use "scope" loosely because p=parameter but a parameters scope is
local.

• Scope: Single letter. One of g=global, m=module level, l=local, p=local parameter

A few examples are…

• slPrefix
s=String, l=local, Variable name=Prefix

• spPrefix
s=string, p=parameter, Variable name=Prefix

• smPrefix
s=string, m=defined at Module level, Variable name=Prefix
These should be PRIVATE to that module by decaring them with Private or Dim.

• sgPrefix
s=string g=public global, Variable name=Prefix
These are GLOBAL to the project.

It would be nice to know if it’s an enum or a type variable as well but that’s enough for me… I can always
add an en or tp to the prefix if I like. The problem is that it soon becomes unmanageable. For example,
we could have a variable named:

 Page 301/ 324

 lngtpmID

the prefix denoting a Long in a Type at Module level is longer than the Name!

So I don’t do that unless it’s important to know if the variable is in a type or an enum.

That’s variables.

Procedures

I name all of my subs, or try to, beginning with lowercase "sub"

Similarly, my functions begin with lowercase "fnc"

All my classes begin with lowercase "c".

I know immediately if I am referencing sub or function, class.

I do a lot of testing of functions and Sub procedures. I name all of the test sub routines

• subtest<complete sub/function Name>

In fact I have a module with just test procedures in it. The module is called mTerst because I spelt it
wrongly when I set the name. I just kept it.

Amongst other things, it makes life easier if I want to list/dump all subroutines. I exclude all of those with
"subtest" at the start of the name.

That’s it. Nothing fancy but a bit more than "s" or "i".

Procedure Comments

An explanation of some comments we sometimes use at the top of some procedures:

77 Some of my procedure comments

• BATCH Execute until done. Could update
multiple procedures. No prompts or
notification messages

 Page 302/ 324

• END MESSAGE Display an End Message. Usually

"Done."
• SELECTION Works with a selection or a line.
• REPORT Produce a HTML report.
• PROJECT Go through the whole project.
• MODULE Only work on this module.
• PROCEDURE Only work on this procedure.
• ALL PROJECTS Go through ALL Projects.

This gives, up front, an idea of the scope of the procedure.

It also points to some normal stuff that procedures regularly do. This means you can plan at least a bit of
the procedure in advance. A sort of template maybe.

It’s very useful too when printing out a list of procedures with the comments under the header line.

Having said all this, I’m pretty lax in keeping this "feature" up to date.

 Page 303/ 324

Procedure layout

My procedures are laid out like so…

78 My procedure layout

NO COMMENTS BEFORE THE SUB/FUNCTION LINE.
Sub/Function sub/fncName (_
 Parameter1 as Type, _
 Parameter2 as Type, _
 Parameter2 as Type _
)
' Comments IMMEDIATELY below the definition
' Comments IMMEDIATELY below the definition
' Comments IMMEDIATELY below the definition
'
SPACE LINE
Dims
SPACE LINE

 Code….

 ‘ --

 ‘ Major section comment.

 SPACE LINE

 Code….

 SPACE LINE

 ‘ ### Special notes like problems or things still to do.

 SPACE LINE
Code….

 SPACE LINE

 ‘ Comment on the next lines of code IMMEDIATELY AFTER WITHOUT SPACE LINE.

 Code….
SPACE LINE

 ‘ Comment on the next lines of code IMMEDIATELY AFTER WITHOUT SPACE LINE.

 Code….
SPACE LINE

 Function = variable
' **
End Sub/Function/Property

 Page 304/ 324

Comments about code on separate lines immediately above the code they’re commenting. I hate end of
line comments. It’s personal. Except for lines I want to tag for some future reason like deleting or
otherwise.

Note the space lines. In this scheme they sometimes act as markers to stop processing code if we examine
the lines in a procedure. This makes it simpler to find the first or last dim line for example. It is also
possible to use lines with specific text for this like ‘ Start of Dims. And ‘ End of Dims.

Add comments directly below the definition so we get a description of the procedures. That’s why I said
about two billion years ago, if the name isn’t enough, do try to put some sort of comment below the
header.

Special notes, like somewhere there is a problem to be looked at later have hashes after the comment
character.

You’ll see a line of stars at the bottom of the procedure. This is a hangover from using continuous paper
when printing on a dot matrix printer. It shows the end of the procedure more clearly. I like it so I’ve kept
it. Quite handy when scrolling down on screen as well.

Please feel free to comment on this or anything in my naming style. You WILL get a reply from me and if

It leads to me altering this document you WILL get credit! You may get a mention in any case!

Module Names

As implied, I use a lot of modules. All my standard modules are prefixed with an m. All my class modules

are prefixed with c. Standard modules with code in that is stable and works well I prefix with zm. Modules

that Are very stable and work very well I prefix with zzm. Some modules I access a lot I prefix with A_. This

is because the modules tree in the project explorer is in alphabetical order. The ones prefixed A_ are then

at the top of the modules tree and are quicker to find.

So…

• A_mTest

• mInsertPrefixes

• zmInsertDims

• zzmWhereAreWe

 Page 305/ 324

Appendix E VBA as an OOP programming language

"To be sure, VBA is not a full object-oriented programming lanauge, as it lacks important OOP
features such as inheritence and function overloading. However, it does include two very

important OOP features: Classes and Interfaces" …. Chip Pearson.

An important, informed, and fairly definitive discussion is at:

https://rubberduckvba.wordpress.com/2015/12/24/oop-in-vba/

The subject is beaten to death on the internet. I’m not going any further here.

https://rubberduckvba.wordpress.com/2015/12/24/oop-in-vba/

 Page 306/ 324

 Page 307/ 324

Appendix F Clearing the immediate window

Here is a complete module for code to clear the immediate window with APIs.

This is from http://www.vbforums.com/showthread.php?672465-RESOLVED-How-to-clear-Immediate-
Window-in-IDE

79 Clear immediate window with API

Option Explicit

Private Declare Function FindWindow Lib "User32" Alias "FindWindowA" _
 (ByVal lpClassName As String, ByVal lpWindowName As String) As Long
Private Declare Function FindWindowEx Lib "User32" Alias "FindWindowExA" _
 (ByVal hWnd1 As Long, ByVal hWnd2 As Long, ByVal lpsz1 As String, _
 ByVal lpsz2 As String) As Long
Private Declare Function PostMessage Lib "User32" Alias "PostMessageA" _
 (ByVal hwnd As Long, ByVal wMsg As Long, ByVal wParam As Long, _
 ByVal lParam As Long) As Long
Private Declare Sub keybd_event Lib "User32" (ByVal bVk As Byte, ByVal bScan As Byte, ByVal
dwFlags As Long, ByVal dwExtraInfo As Long)
Private Const WM_ACTIVATE As Long = &H6

Private Const KEYEVENTF_KEYUP = &H2
Private Const VK_CANCEL = &H3
Private Const VK_CONTROL = &H11

Private Sub ClearInmediateWindow()
Dim lWinVB As Long, lWinEmmediate As Long

 lWinVB = FindWindow("wndclass_desked_gsk", vbNullString)
 'Last param depends on languages, use your inmediate window caption:
 lWinEmmediate = FindWindowEx(lWinVB, ByVal 0&, "VbaWindow", "Immediate")

 PostMessage lWinEmmediate, WM_ACTIVATE, 1, 0&
 keybd_event VK_CANCEL, 0, 0, 0 ' (This is Control-Break)
 keybd_event VK_CONTROL, 0, 0, 0 'Select All

http://www.vbforums.com/showthread.php?672465-RESOLVED-How-to-clear-Immediate-Window-in-IDE
http://www.vbforums.com/showthread.php?672465-RESOLVED-How-to-clear-Immediate-Window-in-IDE

 Page 308/ 324

 keybd_event vbKeyA, 0, 0, 0 'Select All
 keybd_event vbKeyDelete, 0, 0, 0 'Clear

 keybd_event vbKeyA, 0, KEYEVENTF_KEYUP, 0
 keybd_event VK_CONTROL, 0, KEYEVENTF_KEYUP, 0
 keybd_event vbKeyF5, 0, 0, 0 'Continue execution
 keybd_event vbKeyF5, 0, KEYEVENTF_KEYUP, 0
End Sub

 Page 309/ 324

Appendix G P-Code

As with VBA and OOP, I’m not going into detail here. In fact, there isn’t an awful lot out there describing
VBA P-Code. Here are some useful links though.

http://www.woodmann.com/crackz/Tutorials/Vbpcode.htm
http://www.cpap.com.br/orlando/VBADecompilerMore.asp
https://en.wikipedia.org/wiki/P-code_machine
https://web.archive.org/web/20151222171103/http://www.woodmann.com/crackz/Tutorials/Vbpcode
.htm
http://archive.li/0c2is

There is a book. But I’m loath to fork out the dosh so I can’t comment to it:

https://www.betterworldbooks.com/product/detail/microsoft-p-code-
5511610046?utm_source=affiliate&utm_campaign=Text&utm_medium=CJ_Link&utm_term=3630151&
utm_content=Homepage&cjevent=e65cbfa5d5ef11e8806a035f0a180510

ISBN-13 9785511610047
ISBN-10 5511610046

There is a Microsoft link

[MS-OVBA]: Office VBA File Format Structure

https://msdn.microsoft.com/en-us/library/cc313094(v=office.12).aspx

Tools to extract VBA Macro source code from MS Office Documents

https://www.decalage.info/vba_tools

http://www.woodmann.com/crackz/Tutorials/Vbpcode.htm
http://www.cpap.com.br/orlando/VBADecompilerMore.asp
https://en.wikipedia.org/wiki/P-code_machine
https://web.archive.org/web/20151222171103/http:/www.woodmann.com/crackz/Tutorials/Vbpcode.htm
https://web.archive.org/web/20151222171103/http:/www.woodmann.com/crackz/Tutorials/Vbpcode.htm
http://archive.li/0c2is
https://www.betterworldbooks.com/product/detail/microsoft-p-code-5511610046?utm_source=affiliate&utm_campaign=Text&utm_medium=CJ_Link&utm_term=3630151&utm_content=Homepage&cjevent=e65cbfa5d5ef11e8806a035f0a180510
https://www.betterworldbooks.com/product/detail/microsoft-p-code-5511610046?utm_source=affiliate&utm_campaign=Text&utm_medium=CJ_Link&utm_term=3630151&utm_content=Homepage&cjevent=e65cbfa5d5ef11e8806a035f0a180510
https://www.betterworldbooks.com/product/detail/microsoft-p-code-5511610046?utm_source=affiliate&utm_campaign=Text&utm_medium=CJ_Link&utm_term=3630151&utm_content=Homepage&cjevent=e65cbfa5d5ef11e8806a035f0a180510
https://msdn.microsoft.com/en-us/library/cc313094(v=office.12).aspx
https://www.decalage.info/vba_tools

 Page 310/ 324

Appendix H Acronyms

IMHO In My Humble Opinion

VBA Visual Basic for Applications

VBIDE Visual Basic Inegrated Development Environment

IDE Inegrated Development Environment

WT* What The <fill in expletive>

OOP Object Oriented Programming

IMNSVHO In My Not So Very Humble Opinion

DRY Don’t Repeat yourself

KISS Keep it simple stupid

YMMV Your Milage May Vary

VBE Visual Basic Editor

SOL Shit Out of Luck

QAT Quick Access Toolbar

 Page 311/ 324

Appendix I Comments and Contribut as of <>

As time has passed, I’ve also learnt the value of using INI files to store user preferences. While it is
possible to store such data in the database front-end itself, it is lost upon updating. Another option
would be to use the registry, but I dislike using the registry except for registration information and the
likes. Beyond which, I cannot easily be pushed out to a new computer. By using a simple INI file, you
can store any information you choose, it remains intact when updates are performed and can be
transferred with great ease to other computers so the user can retain their settings.

Late Binding on the other hand does not make use of pre-defined Libraries and hence it’s MAJOR benefit
and thus does not suffer from versioning issues. Code written in Office 2016 will typically run just fine in
Office 2013, 2010, …, 97 (always assuming the library is registered on the PC – You can’t perform say
Excel automation if Excel isn’t installed!).

BAckup

IT Department

Windows Scheduled Task

Database Startup

RTF Msgbox

Own msgs on buttons

there is no concept of a procedure beyond the various “Proc” methods. To make it worse, they all need
to know what kind of procedure they’re being called on to work.

For example, the ProcOfLine property takes two required parameters.

line – A long specifying the line to check

 Page 312/ 324

prockind – Specifies the kind of procedure to locate. Because property procedures can have multiple
representations in the module, you must specify the kind of procedure you want to locate. All
procedures other than property procedures (that is, Sub and Function procedures) use vbext_pk_Proc.

So, we could find the name first procedure in a module like so.

Note that the pprockind argument indicates whether the line belongs to a Sub or Function procedure, a
Property Get procedure, a Property Let procedure, or aProperty Set procedure. To determine what type
of procedure a line is in, pass a variable of type Long to the ProcOfLine property, then check the value of
that variable.

That’s right. procKind is an Out parameter. It gets passed by reference. So where all of the other “Proc”
properties of a CodeModule need to know what kind of procedure they’re working with, ProcOfLine is
the one that actually returns it.

The correct way to do this is to declare an uninitialized procKind variable to pass to ProcOfLine before
calling any of the other properties that require a ProcKind parameter.

 Page 313/ 324

Appendix J Latest cWhereAreWe Class Module

This just go to be too big.

I’ve put it on thinkz1.Com

The last update date is on the web site.

http://thinkz1.com/

 Page 314/ 324

Appendix K Cross Reference example

XREF

07 May 2018 02:23

3 Cross reference example

CROSS REFERENCE

PROCEDURE

Monday 07 May

02:23:06 2018

Project name vbaCodeCodeAddIn

Module name zmSorts

Procedure name subccSortDims

Current Module Line

Number
19

Module Sub/Function

Line
5

Number of lines in

procedure
154

Module Start line of

procedure

ProcStartLine

2

Array End Of Dims + 1 41

Array Start Of Dims 14

Module End Of Dims +

1
43

 Page 315/ 324

Module Start Of Dims 16

Array Start Of Code 42

Module Start Of Code 44

Array End Of Header

+1
4

Selection Start Column 22

Selection End Column 22

Selection End Line 19

Selection

Array Sub/Function

Line
3

Procedure type 0

Current Line Text Dim slLine2 As String

Current Array Line

Number
17

Number of Dims 27

Number of Parameters 0

Module End Line 155

Procedure Scope Public

Module End Of Header

+1
6

Number Of Header

Comment Lines
9

Total Comment Lines 19

Code Lines 72

Space Lines 32

 Page 316/ 324

Module End Procedure

Line Number
155

Array End Procedure

Line Number
153

Project File Name
G:\Lisa\Projects\CodeCode_CodeCodeA 2

Testing\CodeCodeA 2.xlam

Module Declaration line

count
1

Unique Project name vbaCodeCodeAddIn(CodeCodeA 2.xlam)

Module None

Consequtive Dims Line
0

Module Space line

number before Dims
15

Module Space line

number after Dims
43

Module End Star line

number
154

Module Space Line

number after Header

Comments

0

Number of Dims 27

Not Defined 1

Not Used 4

Name Type From Defn.

Found
Found at

1 olPane Object Dims 23 2 44 153

2 llSRow Long Dims 34 2 45 47

 Page 317/ 324

3 llSCol Long Dims 35 1 45

4 llERow Long Dims 37 1 45

5 llECol Long Dims 39 1 45

6 slProcName String Dims 18 4 47 48 49 50

7 llLine1 Long Dims 36 4 48 54 88 133

8 llCountLines Long Dims 40 4 49 51 104 147

9 llStartLine Long Dims 33 4 50 51 104 147

10 llEndLine Long Dims 42 2 51 69

11 llCompLine1 Long Dims 25 17

54 57 66 66 69 88

93 102 102 103 129

133 138 138 144

144 147

12 slOLine1 String Dims 27 7
57 59 61 63 93 94

130

13 ilSanityCheck Integer Dims 41 3 67 67 77

14 subMsgBox Not

Local
 2 72 80

15 slLine1 String Dims 20 3 94 96 122

16 UCase$ Not

Defined
 2 94 108

17 slDef1
String

Array
Dims 29 3 96 97 99

18 ilLenDef1 Integer Dims 30 2 97 122

19 llCompLine2 Long Dims 24 6
103 104 107 130

139 139

20 slOLine2 String Dims 28 3 107 108 129

 Page 318/ 324

21 slLine2 String Dims 19 3 108 110 123

22 slDef2
String

Array
Dims 31 4 110 111 114 115

23 ilLenDef2 Integer Dims 32 2 114 123

24 slA1
String

Array
Dims 22 2 122 126

25 slA2
String

Array
Dims 21 2 123 126

26 slVar2 String Dims 16
Not

Used

27 slVar1 String Dims 17
Not

Used

28 intlI Integer Dims 26
Not

Used

29 llELine Long Dims 38
Not

Used

 Page 319/ 324

Appendix L High Definition Timer Class

80 High definition timer class

Option Explicit

'
' Though I copied this from a different source, I believe this
' class is from...
' Excel 2007 VBS Programmer's reference
' by
' John Green, Stephen Bullen, Rob Bovey, Michael Alexander
'
' Dim clTimer As CHiResTimer
' Set clTimer = New CHiResTimer
' clTimer.StartTimer
' clTimer.StopTimer
' Debug.Print clTimer.Elapsed
'
'http://www.mrexcel.com/forum/showthread.php?t=65448
'http://www.tech-archive.net/Archive/Excel/microsoft.public.excel.programming/2011-
04/msg00240.html
'

'How many times per second is the counter updated?
Private Declare _
 Function QueryFrequency _
 Lib "kernel32" _
 Alias "QueryPerformanceFrequency" _
 (lpFrequency As Currency) _
 As Long

'What is the counter's value
Private Declare Function _
 QueryCounter _
 Lib "kernel32" _
 Alias "QueryPerformanceCounter" _
 (lpPerformanceCount As Currency) _

 Page 320/ 324

 As Long

'Variables to store the counter information
Dim cFrequency As Currency
Dim cOverhead As Currency
Dim cStarted As Currency
Dim cStopped As Currency

Private Sub Class_Initialize()
Dim cCount1 As Currency
Dim cCount2 As Currency

'Get the counter frequency
QueryFrequency cFrequency

'Call the hi-res counter twice, to check how long it takes
QueryCounter cCount1
QueryCounter cCount2

'Store the call overhead
cOverhead = cCount2 - cCount1

End Sub

Public Sub StartTimer()
'Get the time that we started
QueryCounter cStarted
End Sub

Public Sub StopTimer()
'Get the time that we stopped
QueryCounter cStopped
End Sub

Public Property Get Elapsed() As Double

Dim cTimer As Currency

 Page 321/ 324

'Have we stopped or not?
If cStopped = 0 Then
 QueryCounter cTimer
Else
 cTimer = cStopped
End If

'If we have a frequency, return the duration, in seconds
If cFrequency > 0 Then
 Elapsed = (cTimer - cStarted - cOverhead) / cFrequency
End If

End Property

 Page 322/ 324

Appendix M Word Doc stuff

This has nothing to do with the VBE.

When I look at some documents I often wonder, how did they do that? Sorting out how to do things in

word can sometimes be very tricky and involve lots of internet searches, trying things, and hair pulling.

And time. I just thought I’d explain a few things about this word document. For me, it wasn’t easy.

At the top of this document is a Table of Contents, a Table of Figures, and a Table of Tables. It turns out

that these, IMHO, are all different flavours of a Table of contents. This is not something that’s obvious

or clear, at least to me. Again, I emphasise that this is how I see it.

A TOC is easy and separate. Probably because it’s the most wanted/used. You mark all of your chapter

headings and sub headings with an appropriate style and then just insert the TOC. I use the standard

styles mostly so that’s not been a problem. Apply a style to the chapter headings and insert a TOC.

For the other two you have to use a Table Of Figures. Yes, I know a table isn’t a figure. Go figure!

Most of the code here is created by:

1. Creating the code in the VBE and making sure it works.

2. Copy/Pasting the code to Excel.

3. Copy/Pasting the code from Excel plus an extra column back into Word.

Thus, the code sits in a table.

Warning: If you copy/paste the code from that table back to the VBE, be aware that the quote used for

comments has possibly changed. I mentioned this in the Disclaimer but it bears repeating.

Rather than scrolling through a LOT of pages multiple times I built a couple of litte procs to go to the

next figure or table. They’re in the Table of Figures and Table of Tables I know, but they weren’t always

when we were writing/creating this! Using these procs I was able to put captions on each table and

figure quicker, or should that be more quickly. Hmmmmm.

About those two procedures. Remember when we were talking about procedure names in Recap

number two? While I was building this doc, I changed the procedure names from subGoToNextTable

and subGoToNextFigure to A_subGoToNextTable and A_subGoToNextFigure, that is, prepended them

with "A_". When I opened the macros menu they were at the top and I didn’t have to scroll down.

Neat! I could also have set them up as buttons in a separate floating toolbar as in Buttons. In fact, I

 Page 323/ 324

created another group on the the ribbon and put them there. You can do that with any of your

ummmmm ugh!!! "macros".

Captions are essential. Even more essential are caption types! That’s what separates the figures from

the tables!

Here are some results devined from lots of and many hours of experimentation and is meant to show

some results of those experiments. This is with Word 16 on Windows 10. Again, nothing to do with the

VBE.

All of this is about Insert Caption in the references Tab and Insert Table Of Figures on the references tab.

• Go to word.

• Insert a blank doc.

• Insert a few pictures.

• Insert two tables.

• Go to the top of the doc and add aboiut 10 or so lines. This is just to give you a place to insert
the tables.

• For each table Insert a caption using defaults and "Table" as the LABEL

• At the top or a few lines down, Build a table of figures with "Table" as the CAPTION LABEL.

• You should see a table with both of the tables listed.

• Delete the caption for table 1.

• The caption for table 2 will stay the same.

• Updating the table of figure will remove table 1 and table 2 will still be there.

• Update the Caption field for table 2 and it will change to table 1.

• Now update the table of figs and you will get table 1.

• To delete a caption, delete the line and then a backspace to totally remove it and it's formatting.

• Table of figures can have a style applied to it.

• You can alter the style of the caption and it will not alter the style in the table of figures. I've not
checked what happens if they are the same style.

• The whole table must be selected to right click for Insert Caption. If you’re in a table you can
click on Table tools. Be careful because there are TWO Layout tabs. You’ll find Select table in
the one on the right.

• You can also use References insert caption.

• To remove the automatic numbering AFTER the caption, insert the caption and then delete it IN
THE DOC.

• To put numbers in FRONT of the caption... Insert caption New caption .. space.. OK.

• To add to that caption type IN THE DOCUMENT.

• Now Insert table of figures and select the space for caption label.

• You can also use the Don’t use caption option.

 Page 324/ 324

Appendix N Contact

Mike and Lisa Green
Kriekengaarde 30
3992 KJ Houten
The Netherlands
Thinkz1@hotmail.com
Web Site http://thinkz1.com/

mailto:Thinkz1@hotmail.com
http://thinkz1.com/

